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Three teeth of the late Cretaceous shark Ptychodus latissimus (Agassiz) are described 
from the upper Middle Turonian Codell Sandstone Member of the Carlile Shale. These 
teeth are significant because they are the first documented occurrence of the species 
in Kansas, extending the paleobiogeographic range of species and adding a new 
paleoecological component to the Codell Sandstone fauna. Its association with various 
ammonite species living in different trophic levels with other ptychodontid sharks may be 
indicative of niche partitioning. 
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inTroducTion

Ptychodus latissimus is a late Cretaceous shark 
species occurring within marine deposits in 
North America, Europe and Japan. It is known 
from a limited stratigraphic and temporal 
range, with the greatest numbers of specimens 
collected from the Late Turonian-Early 
Coniacian (Zone of Terebratulina lata) of 
the English Chalk (Dibley 1911; Woodward 
1911). Other occurrences include the Late 
Turonian of France (Vullo and Arnaud 2009), 
the Blackcoloured Formation in northwestern 
Germany (Diedrich, 2013), the Strehlen 
Formation in eastern Germany (Fischer et 
al. 2017); the Itombe Formation of Angola 
(Antunes and Cappetta 2002), the Phosphatic 
Horizons IVb and V from the Mangyshlak 
Mountains of western Kazakhstan (Radwański 
and Marcinowski 1996); the Opole trough in 
Poland (Niedźwiedzki and Kalina 2003); and 
the Early Coniacian of Japan (Tan 1949).

In the Western Interior Seaway Ptychodus 
latissimus is known only by isolated teeth and 
has its first and only occurrence during the 
middle Late Turonian to the Early Coniacian. 
To date, only 31 teeth have been reported, 
primarily from the basal Atco Formation of 
the Austin Chalk in Texas (Welton and Farish 

1993; Hamm 2004, 2005, 2008; Hamm and 
Cicimurri 2011) and a single tooth from the 
Sage Breaks Member of the Carlile Shale in 
South Dakota (Cicimurri 2004). 

This paper describes previously unreported, 
and isolated P. latissimus teeth which are 
housed in the Sternberg Museum of Natural 
History at Fort Hays State University (FHSM), 
Hays, Kansas. 

maTerialS examined

FHSM VP-19632 three isolated teeth recovered 
from the Codell Sandstone in Jewell County, 
Kansas (Fig. 1). Detailed locality information 
is on file at FHSM. Additional comparative 
material in this study include specimens 
from the Natural History Museum in London 
(NHMUK) and Southern Methodist University 
(SMU) Dallas, Texas.  

GeoloGical occurrence 

The Codell Sandstone (Fig. 2) is a Middle 
Turonian (~90.5 mya) marine deposit that 
conformably overlies the Blue Hill Shale 
Member of the Carlile Formation and 
unconformably the Fort Hays Limestone 
Member of the Niobrara Chalk Formation 
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(Hattin 1962). Deposition of the Codell 
Sandstone was slow and was followed by 
a long period of non-deposition until the 
Niobrara cyclothem (Hattin et al. 1987). The 
Codell Sandstone represents the final stage in 
the regression of the Greenhorn Seaway and a 
depositional hiatus prior to the transgression of 
the Niobrara Seaway. 

The paleoenvironment of the Codell Sandstone 
is interpreted as a shallow, nearshore 
marine deposit with water level depths 
interpreted to be no more than 30-60 meters 
(Kauffman 1967). Biostratigraphically the 
Codell Sandstone lies within the ammonite 
Prionocyclus wyomingensis zone (Hattin 
et al. 1987; Molenaar et al. 2002; Cobban 
et al. 2006). Ammonite diversity within the 
Codell Sandstone is low, consisting only of 
Baculites sp., Prionocyclus wyomingensis, and 
Scaphites sp. Other invertebrate fossils from 
the deposit include annelid worm burrows like 
Ophiomorpha and Thalassinoides, and the 
bivalves Inoceramus cf. I. dimidus, Inoceramus 
cf. I. flaccidus, and Inoceramus sp. Fecal 
pellets, spores, and foraminiferans are common 
occurrences (Hattin 1962). These taxa indicate 
that the sediment was rich in organic detritus, 
further supporting a lower energy setting in 
which organic material could settle out of the 
water column (Meyers 2014). 

SySTemaTic PaleonToloGy

Class CHONDRICTHYES Huxley, 1880
   Subclass ELASMOBRANCHII Bonaparte, 
                                                      1838
      Cohort EUSELACHII Hay, 1902
         Sub cohort NEOSELACHII Compagno,
                                                       1977
            Order PTYCHODONTIFORMES
                                                       Hamm 2019
               Family PTYCHODONTIDAE 
                                                       Jaekel, 1898
                  Genus Ptychodus Agassiz, 1835

    PTYCHODUS LATISSIMUS Agassiz, 1835

deScriPTion

The genus Ptychodus is represented by species 
that possess either a high-cusped crown as 
demonstrated by P. whipplei and P. rugosus 
or low-cusped crown as in P. martini and P. 
polygyrus. Ptychodus latissimus falls within 
the low-crowned group as defined by crown 

Figure 1. Stratigraphic occurrence of Ptychodus 
latissimus FHSM VP-19632 in the Codell 
Sanstone Member of the Carlile Formation. 
Stratigraphic column adapted from Shimada 
1996, fig. 2
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height to tooth height ratios (see Hamm 2008 
for additional data). The tooth morphology of 
the type specimen of Ptychodus latissimus is 
very distinctive compared to other members of 
the genus (Fig. 3). The tooth crowns are low 
and wide with a gently raised cusp. The lower 
symphyseal file tooth is a massive tooth with 

very thick and widely spaced transverse ridges 
that are restricted to the apex of the crown. The 
ridges are thick at their base and thin upward 
toward their apex, forming a sharp cutting edge. 
The ridges are restricted to the central portion of 
the tooth crown, then become narrow and thin 
at the crown edge, curving at the tooth margin. 

Figure 2. Geographic location (black circle) of Ptychodus latissimus FHSM VP-19632 and 
generalized outcrops of the Carlile Formation. Adapted from Hattin 1962, fig. 1.

Figure 3. NHMUK OR 4355, Ptychodus latissimus syntypes. A, associated lateral tooth files; B. 
lower medial file; C, left paramedial file.
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These ridges do not bifurcate, loop or connect 
with any other ridges as seen in other low-
crowned species. The marginal area is wide and 
has a very thick, rugose or granular texture. The 
labial tooth margin exhibits a dendritic pattern 
of fine longitudinal ridges, whereas the lingual 
edge bears the typical granular pattern as in other 
ptychodontids. The tooth root is weakly bilobed, 
and there is a deep lingual crown sulcus.

The teeth in FHSM VP-19632 include a right 
paramedial tooth (Fig. 4a), which is19 mm 
wide, 16 mm long with a 16 mm tooth height. 
It has an elevated and offset crown that is 6 
mm high crossed by five thick transverse ridges 
that terminate sharply at the marginal area. The 
tooth margin is narrow (5 mm wide), coarsely 
granulated and concentric with the crown. 
The anterior margin is wide and extended, 
which would attach to the lingual sulcus of the 
preceding tooth with the tooth file. The mesial 
and distal crown edges are multi-angled to 
fit within teeth from the next lateral tooth file 
to make a strong and flexible battery of teeth 
within the dentition. 

Figure 4b shows a partially preserved crown 
of a right lateral tooth that is 16 mm wide, 
12 mm long, and 5 mm in crown height. The 
crown apex is crossed by six slightly wavy, 

thick transverse ridges. It does not preserve 
the tooth root or marginal areas, but the offset 
crown allows diagnosis to the right side of the 
dentition. Figure 4c a partial tooth crown that 
is 14 mm wide, 15.8 mm long, and 6 mm in 
tooth height as preserved. Five anteriorly curved 
ridges are evident. It is uncertain as to the side of 
the dentition this tooth belongs to, not enough of 
the tooth is preserved to make a determination. 

diScuSSion

The tooth morphology of P. latissimus was 
very specialized, with a reduced number of 
ridges that are thicker at the base and thin at 
the apex, creating a series of thick wedge-like 
ridges. This specific tooth morphology had a 
limited stratigraphic range worldwide. It has 
been suggested that the teeth of Ptychodus 
were specifically derived to feed on hard-
shelled, widely distributed inoceramids 
(Kauffman 1972, 1977; Kirkland 1983; Stewart 
1988). Species of Ptychodus can be placed into 
low, medium and high crown morphologies 
with P. latissimus being a low-crowned variety 
(Hamm 2008; 2020). Each of these crown 
morphologies evolved to process specific 
prey items in specific marine conditions (i.e. 
nearshore versus off shore). The differences 
in tooth design would seem to also indicate 

Figure 4. FHSM VP-19632, Ptychodus latissimus. A, right paramedial in 1 apical, 2 anterior, 3 
posterior and 4 lateral views; B, right anterolateral apical view; C, partial crown apical view.
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differences in jaw morphologies that could 
functionally produce the appropriate amount 
of force to overcome and crack varying shell 
morphologies. 

Studies of the feeding mechanisms between 
modern durophagous sharks, rays, batiods 
and chimaeras has focused primarily on 
cranial musculature and the kinematics of 
prey acquisition and feeding (Wilga et al. 
2000; Summers et al. 2004, Dean et al. 2005; 
Kolmann et al. 2015). Each study demonstrated 
the relationships between jaw morphologies, 
its mode of attachment to the skull, tooth 
morphologies and how these variables relate to 
crushing strength. They have radically different 
skeletal and jaw morphologies, highly divergent 
tooth morphologies, and differing feeding 
strategies and all of them specialize on a variety 
of hard prey (Dean et al. 2005). Kolmann et 
al. (2015) showed that modern durophagous 
vertebrates are morphologically variable even 
among closely related taxa. This necessitates 
the need for an alternative food acquisition 
strategy in a highly competitive environment. 

With numerous variations in tooth crown 
morphologies, there must have been species-
specific durophagous dietary preferences for 
each species of Ptychodus (Cappetta 1987; 
Williamson et al. 1993). It is unlikely that 
each species was dependent on a diet of only 
inoceramids as a major food source, but 
could feed on a variety of hard-shelled prey 
including squids, shrimp and other decapods 
and ammonites, which were widely dispersed 
throughout the Western Interior Seaway. Prey 
processing abilities in elasmobranchs may 
be indicative of underlying environmental 
pressures, and that prey availability may 
have driven the evolution of the durophagous 
feeding mechanism (Dean et al. 2005). This 
was most likely the scenario throughout the 
stratigraphic range of Ptychodus as multiple 
species consisting of low and high-crowned 
species are coeval within the same deposits, as 
exemplified by P. mortoni, P. whipplei and P. 
latissimus in the Codell Sandstone. 

Ammonites are an ecologically diverse 
group of marine organisms with varied 
shell morphologies that inhabited various 
environments based on depth, water 
temperature and salinity. Because of their 
abundance, they may have been a good 
nutrient source for marine predators, just as 
modern cephalopods are important prey for 
large marine animals such as sharks, teleosts 
and sperm whales (Clarke 1980; Takeda et 
al. 2015). Ammonite taxa from the Codell 
Sandstone include Baculites, Prionocyclus, 
and Scaphites (Hattin 1962), taxa that lived 
in waters of less than 100 m in depth (Batt 
1989; Sessa et al. 2015) which is within the 
30-60 meter depth estimation of Kauffman 
(1969). Each species of ammonite lived within 
different levels in the water column, and 
the variations in shell morphology suggest 
different modes of locomotion (Sessa et al. 
2015). Having a straight shell, Baculites 
floated vertically and inhabited the upper part 
of the water column and were capable of rapid 
vertical movement including into the benthos 
(Westermann 1996; 2013), whereas Scaphites 
was primarily benthic, heavily bodied and 
open hooked shell shape that made it sluggish 
(Batt 1989; Tsujita and Westermann, 1998). 
This made scaphitid ammonites an important 
food source for durophagous predators in 
the Western Interior Seaway (Takeda et al. 
2015). The shells of Prionocyclus are involute 
and compressed, and ornamented with ribs 
and tubercules (Kennedy et al. 2001). It was 
more widely distributed throughout the water 
column as juveniles lived in pelagic waters, 
developing more coarse ribs through ontogeny, 
and eventually developing horns and becoming 
more benthic as adults (Batt 1989).

Although the skeletal and cranial musculature 
is unknown in Ptychodus, it is probable that 
the high crowned species such as P. mortoni 
and P. whipplei could have fed on thinner 
shelled ammonites that lived higher in the 
water column such as Baculites and juvenile 
Prionocyclus, bony fishes, and squids rather 
than skimming the ocean floor specifically for 
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inoceramids. Conversely, the low crowned 
species P. latissimus, P. marginalis, P. martini 
and P. polygyrus could have been primarily 
benthic predators (Hamm and Harrell, Jr. 
2013). Their thicker tooth crowns with raised, 
sharp and deep transverse ridges have a greater 
mechanical advantage towards thicker-shelled 
prey, including gastropods, bivalves, decapods 
and heavily ridged and spiny ammonites like 
Scaphites and adult forms of Prionocyclus. 

The disparity in the number of Ptychodus 
latissimus specimens from the Western 
Interior Seaway is intriguing. The majority of 
specimens recovered from North America are 
from a residual lag deposit that sits on top of a 
disconformity at the Austin-Eagle Ford Group 
contact zone in north central Texas (Hamm 
2008, 2009, 2020; Hamm and Cicimurri 
2011). The lag deposit consists of glauconite, 
phosphate nodules and is abundant in marine 
vertebrate fossils including P. latissimus. 
The lag formed as a result of a sharp eustatic 
lowering of sea level, in a shallow shore face 
environment (Hancock and Walaszczyk 2004). 
Condensed phosphatic intervals in the Eagle 
Ford Group are interpreted to be formed by 
slow sedimentation during maximum flooding 
or maximum transgression events (Loutit et al. 
1988; Dawson 2000). Hancock and Walaszczyk 
(2004) stated that the disconformity at the 
base of the Austin Group represents sea level 
low stand and is uppermost Turonian and 
represents a significant rise in sea level at the 
beginning of Austin Group sedimentation. 
Lithologically, this zone represents a deep 
regressive trough that cuts through the upper 
Arcadia Park Formation of the Eagle Ford 
Group (Hancock and Walaszczyk 2004). The 
upper part of the Arcadia Park Formation 
shale unit contains the bivalves Mytiloides 
incertus and M. scupini which correlate to the 
Prionocyclus hyatti Zone to the Prionocyclus 
wyomingensis Zone. The Codell Sandstone 
in Kanas and the Sage Breaks Member of the 
Carlile Shale in South Dakota also represent 
shallow, nearshore marine environments 
and both units contain these biostratigraphic 

markers. Each deposit represents a similar 
facies and depositional environment and 
preserve a wide variety and high abundance of 
marine vertebrates (Cicimurri 1998, 2004; Bice 
2015). By comparison, European occurrences 
of P. latissimus within the Middle to Late 
Turonian Zone of Terebratulina lata (formerly 
T. gracilis) of the English Chalk (Dibley 1911; 
Woodward 1911) has yielded a large and 
diverse shark fauna (Guinot et al. 2013). 
The environmental conditions and food sources 
changed radically from the latest Turonian 
to earliest Coniacian due to a major rise of 
sea level during the Niobrara Cyclothem 
(Kauffman and Caldwell 1993). There was a 
major incursion of cool boreal water from the 
north through the Western Interior Seaway 
into Texas, and warm Tethyan waters from the 
south producing a caballing effect that stirred 
current circulation and improved benthic 
oxygenation (Hay et al. 1993). Evidence for 
this in Kansas is recorded in the basal Codell 
Sandstone which was deposited in a lower 
distal shoreface environment (Meyers 2014). In 
Texas there was a change from the siliciclastic 
shales of the Arcadia Park Formation to the 
coccolith-rich pelagic chalk of the Austin 
Chalk (Hancock and Walaszczyk 2004). 
A major component of the Austin Chalk is 
diverse dinocyst assemblage that is indicative 
of an open marine environment with well-
oxygenated and oligotrophic marine conditions 
(Eldrett et al. 2017). 

Several factors lead to the disappearance 
of P. latissimus and other ptychodontids 
in the Western Interior Seaway at the end 
of the Turonian. Changes in salinity, water 
temperature, and oceanic circulation patterns 
may have caused the disappearance in the 
number of and differing shell morphotypes 
of ammonite species that were a major food 
source. Kennedy (1988) reported 18 genera 
and 28 species of ammonite from the upper 
Eagle Ford group. By the early Coniacian 
sea level rise had slowed and the input from 
boreal and tethyan waters stopped benthic 
circulation, which lead to dysoxic bottom 
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conditions (Lowery 2015). Ammonite diversity 
was much lower with only two genera and 
species being present; Forresteria hobsoni and 
Scaphites preventicosus (Kennedy and Cobban 
1991). Ptychodus latissimus disappears from 
the English Chalk during the early Coniacian. 
The abundance of specimens from European 
deposits can best be explained by deeper water 
environments with less turbulent waters and 
slower depositional rates, which allowed for 
higher potential for preserving dentitions whole. 
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