
Chapter 5

(Crystalline) Materials Under High Pressure

5.1. Material properties

A material can be described using its macroscopic and microscopic properties. The

phenomena manifested by materials at pressures prevalent at the depths of the Earth are not

only first-rank problems of geosciences but stand at the forefront of modern condensed

matter physics (Hemley and Ashcroft, 1998). The core states in an atom remain sharp

delta-function-like states. These states are raised or lowered relative to their positions in

isolated atoms. The shifts are mainly due to the screened Coulomb potential from the rest

of the atoms in the crystal. The description of the former properties is obtained from its

thermodynamic behaviour. Through the elucidation of Boyles theory (1660), the pressure

ðPÞ; volume ðVÞ and temperature ðTÞ relationship was established.

For microscopic description, the basic Hamiltonian at the level of elementary

nuclear and nuclearcharge is expressed as:

Ĥ ¼ Ĥnn þ Ĥen þ Ĥee; ð5-1Þ

where Ĥnn and Ĥee are the kinetic energy of the nuclei and electrons, respectively, and the

third term represents the Coulombic attractions. When the system is enclosed in a volume,

V ; the stationary states of the fundamental Schrödinger equation can be represented by

ĤCðVÞ ¼ EðVÞCðVÞ ð5-2Þ

The relation involves volume V; which is alterable by pressure. This quantum-mechanical

expression embodies a complex many-body problem. (Note: An atomic unit of pressure is

e2=2a4
0; which corresponds to 14,720 GPa.)

The microscopic description of the properties of minerals, like other crystalline

solids, is seen to be governed by quantum mechanics, which governs the behaviour of

electrons and nuclei in solids. Again, the atoms in a mineral manifest space-group

symmetry. Hence, a knowledge of crystallography and solid-state physics becomes

important in understanding the mineral behaviour, especially with respect to the phase

transitions, equations of state (EOS), electrical and chemical transport, etc. However, in

minerals, it should be noted that interactions between electrons in atoms can be seen as

responsible for all such behaviour.

Conventional solid-state physics extends from electronic band theory, explaining

metals, insulators and semiconductors, to the theory of superconductivity and the quantum
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Hall effect. X-ray, neutron and light scattering have become powerful probes of structures

from microscopic to near-macroscopic length scales.

Quantum theory shows that the time-independent ground state of a system is given

by a complex anti-symmetric many-body wave function (whose square gives the

probability density of finding a particle in each point in space):

rðrÞ ¼
ð

dr2 dr3 dr4· · ·Cðr; r2; r3; r4; r5;…ÞC pðr; r2; r3; r4; r5;…Þ ð5-3Þ

In an atom or molecule, the eigenvalues are the well known energy levels of the electronic

system, which are modified by other atoms in the crystal.

The core states of atoms are sharp delta function-like states, which are

raised/lowered in energy with respect to their positions in isolated atoms. The valence

and conduction states broaden into bands. Under pressure, the bands broaden and become

different from those of atomic states (see Section 5.1.2).

Crystals must have a lower energy than the aggregate of the constituent atoms

separated from each other. The binding force between atoms is dominantly electrostatic

and the Pauli’s exclusion principle keeps the electrons apart. In ionic crystals, the binding

force is primarily due to the electrostatic attraction among ions (e.g., Naþ and Cl2) while

in covalent crystals the binding occurs through hybridization of valence electrons causing a

lowering of the energy of electrons (e.g., in diamond).

In metals, the binding force arises from embedding the atom cores in a sea of

itinerant electrons. In silicates, the bonds are nearly half ionic and half covalent. In van der

Waals bonding, the dipoles fluctuate on separated atoms or molecules and the forces occur

through local many-body exchanges and correlation interactions among electrons.

Excited state properties involve the energetic exciting of electrons out of their

ground-state configurations. These are depicted in optical spectra.

High pressure alters the nature of chemical bonds, electronic and crystal structures,

and thermal and mechanical properties of solids. Simple molecular solids may transform

into a polymeric phase before they become metals at high pressure (Maihiot et al., 1992).

Large molecules are stiffened by high pressure. That is how a droplet of pressure-frozen oil

(large molecule) becomes capable of denting a steel plate!!

Very soft materials manifest an increase in density by as much as 1,000% (i.e., 20

times) at pressures of several hundred GPa, while the incompressible ones may show up to

,50% increase in density. With increasing density, electrons in all materials become

increasingly unstable and, above a critical density, the electrons delocalize into conduction

states, thus forming a metal. The metallization process occurs due to an electronic overlap

of valence and conduction bands.

Pressure may induce order, but it also can bring about disorder. Pressed beyond its

stability field, a crystalline matter may transform to an amorphous material. This

amorphization persists when the temperature is too low for recrystallization to the

equilibrium high-pressure crystalline phase. Such unusual metastable states manifest

varying degrees of disorder.
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Much information on the bulk properties at high temperatures and pressures and on

single-crystal elasticity and strength anisotropy may be obtained by integrating the high-

pressure techniques, the scope of which are presented below (Table 5.1).

Pressure-induced phase changes or bonding changes follow several rules:

Rule 1

Open-structure collapse. Open structures stabilized by weak ionic or van der Waals forces

can easily collapse under pressure yielding to denser structures.

E:g:; KCl or NaCl ðBIÞ structure!
2:5 GPa

P
CsCl ðBÞ structure ðdenserÞ

ðdiscussed earlier in Section 3:1Þ

Rule 2

Valence number changes. A few valence bonds per atom are non-metallic, whereas those

with higher valence number are metallic. Under pressure, lighter elements behave like

heavier elements. Examples: Germanium (Ge) a semiconductor with open diamond

structure collapses to a white tin structure and becomes a metallic electrical conductor (like

aluminium). Silica (SiO2) (with SiO4 tetrahedra) at ,10 GPa and moderate T transforms to

stishovite (a TiO22-rutile structure) with hexavalent silicon.

In general, under pressure, an insulator transforms to a semiconductor or metallic state

(Mott transition). An exception to this rule is observed when high-valent cations transform

to lesser valency under pressure. Ferric iron is seen to reduce reversibly to ferrous iron at

,1–2 GPa pressure (proved by 57Fe Mössbauer spectroscopy).

Rule 3

Effects on cooperative phenomena. An increase or decrease in magnetism and

superconductivity are seen under high pressure. For example, iron above 11 GPa (RT)

loses its ferromagnetic behaviour.

Rule 4

Reaction-path blocking: Certain reaction paths may be blocked. For example, poorly

crystalline graphite yields to ordinary cubic diamond but a hexagonal form of diamond

TABLE 5.1

The scope of different pressure techniques

Techniques Determination High-pressure range

XRD (hydrostatic) Lattice parameters Multi-megabar

Bulk moduli

RDX Shear modulus 200 GPa

Single-crystal elasticity tensor

Ultrasonic Velocities of VP and VS — their

orientational dependence

,20 GPa

Shock-wave Bulk elasticity HPT Hugoniot

Ab initio calculations Elasticity .300 GPa
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can only be prepared by subjecting highly crystalline graphite to a pressure of 13 GPa

and 1,5008C.

At high pressure, carbon takes the diamond structure (5 GPa), while silicon and

germanium take the white tin structure (10 GPa). White tin changes to a body-centred

tetragonal form with coordination number 8. Generally, the high-pressure forms of lighter

elements or compounds are suggested by low-pressure forms of chemically heavier

elements or compounds.

5.1.1. Thermodynamics, equilibrium and time interval

Thermodynamics provides a description of the equilibrium states of systems with

many degrees of freedom. It focuses on a small number of macroscopic degrees of

freedom, such as internal energy, temperature, density or magnetization, needed to

characterize a homogenous equilibrium state. In systems with a broken continuous

symmetry, thermodynamics can be extended to include slowly varying elastic degrees of

freedom and to provide descriptions of spatially non-uniform states produced by boundary

conditions or external fields. Since the wavelengths of elastic distortions are long

compared with any microscopic length, the departure from ideal homogeneous equilibrium

is small.

Thermodynamic equilibrium is produced and maintained by collisions between

particles or elementary excitations that occur at a characteristic time interval, t: In low-

temperature solids or in quantum liquids, t can be quite large, diverging as some inverse

power of the temperature T:
The mean distance l between collisions (mean free path) of particles or excitations

is characteristic velocity V times t: In solids, V is typically a sound velocity. Most

disturbances in many-body systems have characteristic frequencies that are of the

order t21: If excited, they decay rapidly to equilibrium.

5.1.2. Many-body systems and broken symmetry

5.1.2.1. Crystalline symmetries: 5-fold symmetry, icosahedra and quasi-crystals

The system of crystals is classified based on 230 symmetries (see also Section

5.1.5). A periodic crystal is invariant with respect to a discrete set of translations only,

rather than to the continuum of translations that leave the high-temperature state

unchanged.

The concept of symmetry helps approach condensed matter phases, from high-

temperature fluids to low-temperature quantum crystals. A description of their symmetry

can be made in terms of order parameters, which can also be invoked to explain phase

transitions, elasticity, hydrodynamics and topological defect structures.

The concepts of broken symmetry and order parameters have emerged as unifying

theoretical concepts applicable not only to condensed matter physics but also to particle

physics and even to cosmology. Condensed matter physics has built on atomic and
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molecular physics and also on classical and quantum mechanics. It also relies on statistical

mechanics and thermodynamics.

Along with these concepts, many-body theory can explain normal Fermi liquids,

electrons phonon-s, magnetism and superconductivity. Nature offers an unlimited variety

of many-body systems, from dilute gases to quantum solids to living cells and quark-gluon

plasma. These cover the subject which can be referred to as “hard” condensed matter

physics.

Mean field theories are set up. Mean field theory replaces the actual configurations

of the local variables (e.g., spins) by their average value and it neglects the effects of

fluctuations about the mean.

The densest packing of 12 spheres around a central sphere is icosahedral and this

rule may continue hierarchically. Since the early 1960s, many icosahedral clusters have

been found. The size of an icosahedron is limited by the increasing strain with increase in

size. At a certain size, a transition from icosahedron to cuboctahedron will probably occur.

The hierarchical packing may be obtained by arranging Penrose tilings in two or

three dimensions — a mathematical pattern that has the geometrical properties required of

a quasi-crystal. In 3D, Penrose tiles are obtuse and in acute rhombohedra form with angles

of 116.6 and 63.48 (see Mackay, 1998). However, hierarchy can also offer an alternative

to lattice repetition in providing an assembly of atoms with an infinite number of

almost identical or quasi-equivalent sites. Hierarchy has now appeared as a building

principle in a class of inorganic materials, the quasi-crystals. These are solids with 5-fold

symmetry as indicated by their diffraction patterns — a symmetry impossible for a

conventional pattern.

Quasi-crystals are a further step away from conventional crystals because they have

many centres of local icosahedral symmetry. We now may expect many more varied

structures beyond the austere domain of classical crystallography. Clusters of boron

suboxide, B6O, show icosahedral shapes, produced from hierarchial clusters with 5-fold

symmetry (usually forbidden to solid crystals). Without dislocated grain boundaries,

the glide planes in this boron suboxide are locked and so the particles are very

hard, suggesting promising technical applications (see Hubert et al., Nature, 391,

376–378, 1998).

5.1.2.2. Broken symmetry
The macroscopic properties are governed by conservation laws and broken

symmetries. Associated with each broken symmetry are distortions, defects and dynamical

modes that provide paths to restore the symmetry of the original high-temperature state.

Magnetic systems have played a very important role in the development of our

understanding of broken symmetry.

These can reveal how the breakdown of symmetry occurs and results in generalized

elasticity. The phenomena we commonly observe involve an order of 1027 particles (e.g.,

as in a litre of water) and the motion of each of those particles can scarcely be observed.

However, we can observe microscopic variables, such as particle density, momentum

density or magnetization, and measure their fluctuations and response to external fields.
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It is these observables that characterize and distinguish the many different thermo-

dynamically stable phases of matter that account for why liquids flow, solids are rigid,

some are coloured, some are transparent, some are insulators and others are metals or

semiconductors, etc. Even the simplest atoms in aggregate can occur in different states. For

example, helium can be seen as gas, liquid or solid and also as a non-viscous superfluid at

low temperatures.

5.1.2.3. Electron excitations and band gaps

Presence of unpaired electrons builds up the magnetism. Hund’s rule maximizes the

net magnetic moment but decreases the total electrostatic energy. The formation of energy

bands (hybrid crystalline electronic states) may lead to intermediate- or low-spin magnetic

structures. In Fe3þ (3d5 : t3
2g and e2

g electronic configuration) the net magnetic moment is

5mB (mB ¼ Bohr magneton) while that of Fe2þ ð3d6 : t4
2g and e2

gÞ is 4mB: The high-spin and

low-spin state of Fe2þ ð3d6Þ was shown in Fig. 4.5.

The origin of crystal-field splitting is not only due to the potential field of a point-

charge lattice but also due to bonding hybridization. Furthermore, d-states are not pure

atomic-like states but are dispersed across the Brillouin zone (energy varies with k). The

splitting is due to d–d interactions between next-nearest neighbours and to p–d and s–d

interactions between neighbouring (oxygen) ions. The d–d interactions lead to splitting

that varies as 1=r5: The splitting can also be effected by hybridization, which also mediates

the sign of the magnetic coupling J:
When the magnetic moments are unequally distributed over different sub-lattices,

ferrimagnetism results. From incomplete cancellation of aligned spins, a net spontaneous

magnetic moment arises. For ferromagnetic and anti-ferromagnetic phases, the magnetic

fields are aligned (below the Curie and Nèel temperatures), which gives rise to magnetic

splittings.

Excitations in a system can be induced by external (e.g., electronic or magnetic) or

internal (e.g., temperature) fields. In the presence of an intense external electric field, the

response can be a function of the magnitude of the field and the susceptibility is a function

of the field. This gives rise to a non-linear optical response (e.g., multi-photon excitations).

Electrons can be excited into extended or itinerant states (i.e., across the band gap) or the

excitations may be local (i.e., forming a localized electron–hole pair or exciton). The

electronic transitions involving the valence (bonding) band, the conduction (anti-bonding)

band and d-electron levels can be investigated by using optical spectra.

The study of the electronic structure of highly correlated transition-metal

compounds is important for a better understanding of a material and, in 1985, Zeanen,

Sawatzky and Allen (ZSA) proposed a theoretical phase diagram for it.

In addition to the on-site d–d Coulombic interaction ðUÞ employed in the Mott–

Hubbard theory, the ligand-valence band-width ðWÞ; the ligand-to-metal charge transfer

energy ðDÞ; and the ligand–metal hybridzation interaction are explicity included as

parameters in the model Hamiltonian. The high-energy-scale charge can be varied

moderately by external temperature and magnetic field but can be considerably affected

by pressure.
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When an additional electron is added to a d-orbital, an energy (U; Hubbard)

increase occurs. For localization of the electron, the parameter that governs the tendency is

U=W ; where W is the band-width. Mott or charge-transfer insulators (at low pressures)

become metallic under pressure because W increases with pressure and U decreases

because of increased screening. Thus, at high pressure, band theory is likely to be more

reliable. Again, Monte Carlo simulations (Gunnarson et al., 1996) predict metallic

behaviour when U=W , N; where N is the orbital degeneracy (5 in the d-orbital case).

This again shows that, at high pressure, band theory appears to be more appropriate.

5.1.2.4. Dielectric properties

The dielectric properties such as piezoelectricity, pyroelectricity and ferroelec-

tricity are structure dependent.

Piezoelectricity is manifested by electrical polarization caused by applied stress.

With the exception of point group 432, any crystal belonging to one of the 20 remaining

non-centrosymmetric point groups (that also contain a unique polar axis) is piezoelectric.

The motif common to many piezoelectric crystals is the tetrahedrally coordinated atom.

A common example of piezoelectric crystal is tourmaline, which is also

pyroelectric. In this, the silicon atoms in the tetrahedra are positively charged;

consequently, the extension along the polar axis would result in a negative polarity on

the (0001) face. The quartz form of SiO2 is a very important piezoelectric material used for

transducers and frequency-controlled devices.To cater for these applications, large quartz

crystals are grown by implanting seeds in large pressure vessels.

Pyroelectric materials are characterized by the presence of a spontaneous

polarization, Ps; the magnitude of which is temperature dependent.

Ferroelectricity is manifested when the spontaneous polarization is capable of

reversal or re-orientation of its polar direction on application of an electric field.

Ferroelectric transition is either a displacive type or an order–disorder type. To understand

ferroelectric phase transitions, numerous experimental and theoretical studies are

undertaken. The origin of ferroelectric phase transitions in oxides is due to the anharmonic

potential surfaces caused by softening of the short-range repulsions by covalent

hybridization. These cause the atoms to move off-centre and towards each other.

Oxide ferroelectrics are studied for their (i) soft modes, using time-resolved

spectroscopy, (ii) atomic positions, by nuclear and X-ray studies, (iii) ground-state

potential surfaces, by electronic structure studies, (iv) electronic structure and

(v) macroscopic polarization.

5.1.2.5. Electronic and magnetic behaviour

The electronic and magnetic properties directly influence large-scale global

phenomena ranging from the initial differentiation of the planet, the formation and

transmission of the Earth’s magnetic field, the propagation of seismic waves and the

upwelling and downwelling of mass through the mantle (Hemley et al., 1998).

The pressure range within the Earth can compress the rock-forming silicates

and oxides by factors of 2–3 and the molecular species and rare gases by well over an order
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of magnitude. Discrete magnetic and electronic transformations such as metallization and

magnetic collapse may also occur (e.g., Cohen et al., 1997).

Under pressure, volatiles can be bound as “valence lattices” in dense, high-pressure

phases, e.g., hydrogen in ice, mantle silicates and ferrous alloys. Pressure at depths may

dissociate Fe2þ–Mg2þ combination from oxide or silicate phases and incompatible

elements such as Fe and K may form alloys (Parker and Badding, 1996).

The valence and conduction states broaden into energy bands under higher

pressure. When an ion possesses a shell filled with electrons, it attains greater stability. The

interaction between ions through Madelung or strong electrostatic forces enhances the

crystal stability.

Band structures. In an insulator, the bands are filled and, due to the Pauli exclusion

principle, nothing can happen without exciting electrons to states above the gap. But

this excitation requires a large energy and, hence, in a small field no current can flow.

Metals have partially occupied states at the Fermi level and the current will flow.

In insulators, the highest occupied levels form the valence band, designated as Ev;
and the empty energy levels form the bottom of the conduction band, Ec: The difference is

the band gap, Eg ¼ Ec 2 Ev: Crystals with band gaps between occupied and unoccupied

states should be insulators and those with partially filled bands should be metals.

From the intermediate states (formed by chemical doping), the electrons can be

excited into the conduction bands or holes in the valence bands and the crystal becomes a

semiconductor. In a non-magnetic system, each band holds two electrons. Thus, a crystal

with an odd number of electrons in the unit cell should be a metal since it will have at least

one partially filled band. Magnetic crystals that are insulators by virtue of local magnetic

moments are known as Mott insulators (Mott, 1990).

At energies intermediate between the valence and conduction bands, there can

occur localized states, which affect the optical and transport properties There is a possible

relationship between optical modes (high-frequency) and elastic properties (low-

frequency) acoustic modes.

5.1.2.6. Ionicity in bonding: Madelung forces

In crystals, atoms donate or accept electrons, resulting in ionicity. The ionicity is

driven by the increased stability attained through filling of the outer shell by electrons. For

example, oxygen having a nuclear charge (z) should have 1s2, 2s2 and 2p4 electrons but a

filled p-shell has six electrons. O22 ion is unstable in the free state but is stabilized by the

crystal field in an oxide. In an oxide or silicate crystal, the O grabs two more electrons to

form an O22 anion from another atom, usually a positively charged cation. This strong

electrostatic (called Medelung) interaction between the ions increases the crystal stability.

The ionic solids are dominated by electrostatic or Madelung forces between

charged ions. The alkali halides and alkaline earth oxides are proto-typical ionic solids.

Employing all modifications and the self-consistent methods, the EOS, elasticity, the

electronic and optical properties of these materials are obtained. In ionic crystals, the

Madelung energy is to be added to the overlap energies.
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In atomic computation, most studies use a “Watson sphere” (Watson, 1958), which

is a charged sphere, usually of opposite charge to the ion.

5.1.3. Covalent bonding and hardness

Hard substances have a high number of strongly directed, covalent chemical bonds

per unit volume. Soft substances generally have fewer bonds per unit volume or bonds that

are weak or weakly directed, such as ionic or dipole attraction forces. Covalent (electron

pair) bond strengths vary between ,60–90 kcal/mol for most elements present in hard

materials. The heavier elements generally offer more bonds per atom. A plot of hardness

measured by Knoop indenter vs. the bond energy per molar volume for various substances

is essentially linear.

The hardest materials are generally made of light elements, with diamond at the top.

Hard materials are brittle because the strongly directed bonds favour hardness but not

plasticity, which involves the inter-site motion of atoms. At high pressures, many brittle

materials become ductile.

5.1.3.1. Hardness and bulk moduli
Hardness ðHÞ of ionic and covalent materials increases with bulk modulus (Cohen,

1993). Diamond has the highest known bulk modulus, K ¼ 444 GPa, and it is also the

hardest material known, with its single-crystal H ¼ 90 GPa. It is followed by cubic boron

nitride (cBN) with corresponding values of K ¼ 369 GPa and single-crystal H ¼ 48 GPa

(Sung and Sung, 1996).

High-bulk moduli require high charges and small volumes; thus, tetravalent cation

dioxides could be hard. Although silicon is the smallest tetravalent cation, the common

forms of silicon dioxide are not hard because of their open structures, such as in quartz and

cristobalite phases ðNC ¼ 4Þ: But the denser phase stishovite has a much higher bulk

modulus, 298 GPa (Hemley et al., 1994). This value is much higher even than that of the

other common hard material, alumina, whose bulk modulus is 252 GPa. Indeed, among

polycrystalline materials, the hardness of stishovite (33 GPa) rivals those of the hardest

materials. The bulk moduli ðKÞ and the Knoop micro-hardness values of synthesized

compounds obtained by different workers were earlier presented in Table 3.5.

5.1.3.2. Phonon-s and band states
Most solids can be described by harmonic or by anharmonic approximations. In the

former, non-interacting phonon-s couple strongly and form a broad continuum band. In the

latter, strong interaction of phonon-s leads to the formation of states of bound quasi-

particles, coupled only weakly in the crystal. For example, in two-phonon- vibrational

spectroscopy, the quasi-particle is a biphonon- acting as a molecular oscillator. The

biphonon- forms a sharp peak separated from the origin of the broad two-phonon-

continuum band by the amount of its anharmonicity. The condition when the harmonic and

anharmonic cases overlap has been a problem of great interest in condensed systems. It is

postulated that if the relative magnitudes of the continuum bandwidth and the

anharmonicity could be varied so that the former would exceed the latter, the band

biphonon- would disappear into the continuum band.
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In a crystal, the band states are characterized by a continuous quantum number k; so

that the eigenvalues are 1ðkÞ and the eigenfunctions are represented by Bloch states

(see equations (4-27a)–(4-27c)):

fðk; rÞ ¼ UðrÞexp2ikr ð5-4Þ
where UðrÞ is a periodic function of position r: The eigenvalues (i.e., energy) as a function

of k are known as the band structure. By studying the band structure, densities of state

(DOS) and the charge densities, one can understand the nature of bonding and its changes

with chemistry, distortions and pressure.

Experimentally, bands can be studied by photoemission spectroscopy, which helps

determine the relative energies of emitted electrons as functions of input photon energy

and wavevector, or by employing X-ray spectroscopy.

In angle-resolved photoemission, the observed band structure is the energy

spectrum for removing electrons from the surface of the crystal, which is sometimes a

complex phenomenon — and may be broadened or shifted from the intrinsic energy levels

in the interior of the crystal.

In a non-magnetic system, each band holds two electrons and thus a crystal with an

odd number of electrons in the unit cell should be a metal because it will have at least one

partially filled band (except in Mott insulators). Magnetic crystals that are insulators by

virtue of local magnetic moments are known as Mott insulators (Mott, 1990). The real

energy states in a crystal are not single-particle eigenstates at each value of k; rather, there

is an energy spectrum which has more or less strong peaks at the quasi-particle energies.

5.1.4. Elasticity

According to Hooke’s law (Nye, 1985), the stress ðsÞ and strain ð1Þ for small

deformation in a crystal are linearly related by

sij ¼ Cijkl1kl; i; j; k; l ¼ 1; 2; 3

where the fourth rank tensor Cijkl is the elastic constant tensor.

Thus, the elastic constants can be determined directly from the computation of the

stress generated by small strains (Wentzcovitch et al., 1995). The cubic crystal has three

independent elastic constants, C11; C12 and C44 (in the Voigt notation).

The strained lattice (lattice vectors a0) used in determining the elastic constants is

related to the unstrained lattice ðaÞ by the relation a0 ¼ ðI þ 1Þa; where I is the identity

matrix. The strain tensor is

1 ¼

1 1=2 0

1=2 0 0

0 0 0

0
BB@

1
CCA ð5-5Þ

so that Hooke’s law gives

sxx ¼ C111; syy ¼ szz ¼ C121; syz ¼ C441; szx ¼ sxy ¼ 0:

Chapter 5410



For the lower symmetry of the strained lattice, the 4 £ 4 £ 4k-point mesh yields 20 special

k-points. The ion positions are still fixed by the symmetry so in the strained lattice only

electrons should be relaxed.

The elastic constants completely specify the elastic properties and acoustic

velocities of a single crystal. For the purpose of comparing with seismological data, it is

interesting to compute the elastic properties of an isotropic polycrystalline aggregate. The

bulk modulus of such an aggregate is well defined, whereas the shear modulus is inherently

uncertain, depending on the arrangement and shape of the constituent crystals (Watt et al.,

1976). The bulk modulus is related to the elastic constants by

K ¼ 1=3ðC11 þ 2C12Þ ð5-6Þ

The isotropic shear modulus in the Hashin–Shtrikman averaging scheme (Hashim

and Shtrikman, 1962) is given by

G ¼ 1=2ðGU þ GLÞ ð5-7Þ

where the upper (U) and lower (L) bounds are, respectively,

GU ¼ C44 þ 2
5

Cs 2 C44

þ 18ðK þ 2C44Þ
5C44ð3K þ 4C44Þ

� 	
ð5-8Þ

and

GL ¼ Cs þ 3
5

C44 2 Cs

þ 12ðK þ 2CsÞ
5Csð3K þ 4CsÞ

� 	
ð5-9Þ

where Cs ¼ ðC11 2 C12Þ=2:

5.1.4.1. Elastic anisotropy
Anisotropy of crustal and mantle materials arises from the preferred

alignment (texturing) of the aggregate of intrinsically anisotropic minerals. For cubic

crystals, the elasic anisotropy is conveniently expressed in terms of Zener ratio ðAÞ; which

is the ratio of the shear moduli in the (100) and (110) planes in the [100] direction:

A ¼ 2C44

C11 2 C12

¼ 2ðS11 2 S12Þ
S44

ð5-10Þ

For the elastically anisotropic case, A ¼ 1:
Under Reuss approximation, A can be directly measured from radial diffraction

experiments, without the use of any assumed bulk property (Singh et al., 1998; Merkel

et al., 2002) but, with increasing pressure, A value decreases (Karki et al., 1999).

For cubic materials, single-crystal elastic anisotropy and seismic anisotropy can be

related through the anistropy factor, A; defined as

A ¼ 2C44 2 C12

C11

2 1: ð5-11Þ

For isotropic material, A ¼ 0:
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The anisotropy of a single crystal is determined by its elastic constant tensor.

For cubic phases, there are three independent elastic constants and, for hexagonal

phases, there are five. The elastic constants are related to the elastic wave (seismic)

velocities by the Cristoffel equation (Nye, 1985)

lcijklnjnl 2 rV2dikl ¼ 0

where V is the velocity, r is the density, n is the propagation direction and Cijkl is the

elastic constant tensor and dik is the Kraenecker delta function. The elastic anisotropy

is determined by calculating the velocity of each of the elastic waves (one P and

two S) for all propagating directions. The data on elastic anisotropy have important

implications for the interpretation of seismological observations of the anisotropy in

terms of flow in the upper mantle (Tanimoto and Anderson, 1984). To determine the

elastic anisotropy of a polycrystalline aggregate, one must know the elastic constant

tensor of the individual crystals and the texture as specified by the orientational

distribution function.

The eigen values of the 3 £ 3 matrix yield the three unique elastic-wave velocities

for propagation direction n; whereas the eigenvectors yield the polarization directions

(Musgrave, 1970).

5.1.5. Elastic constants: crystal systems

The elastic constants are directly related to the inter-atomic potentials.

Consequently, the parameters of a potential are often determined from elastic constants.

In general, the number of independent elastic constants increases as the point-group

symmetry of the solid decreases: the most isotropic solids have the smallest number of

elastic constants. The highest symmetry that a three-dimensional (3D) crystalline solid has

is cubic symmetry and three independent elastic constants. The solid hexagonal symmetry

has only two independent elastic constants. In two- and 3D crystals of lower symmetry,

there are more elastic constants. For example, a 2D crystal with 4-fold symmetry (rather

than 6-fold symmetry, like a 3D crystal with cubic symmetry) has three elastic constants.

The numbers of independent elastic constants for 3D crystals are listed in Table 5.2.

For crystals of simple systems (e.g., cubic and hexagonal), the values for

room-temperature harmonic elastic constants and densities ðrÞ are shown in Table 5.3.

TABLE 5.2

Number of elastic constants for crystal systems

Crystal system No. of elastic constants

Triclinic 21

Monoclinic 13

Orthorhombic 9

Tetragonal 6 or 7

Rhombohedral 6 or 7

Hexagonal 5

Cubic 3
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TABLE 5.3

The elastic constants of some phases crystallizing in cubic and hexagonal systems

Name Ref (composition) r C11 C12 C44 Reference

Cubic crystals
Fluorite (CaF2) 3.180 1.64 0.53 0.337

Chromite (FeCr2O4) 4.450 3.225 1.437 1.167 Hearmon (1956)

Diamond (C) 3.511 9.320 4.112 4.167

Galena (PbS) 7.5640 1.020 0.380 0.250 Hearmon (1956)

7.5640 1.270 0.298 0.248

Gold (Au) 19.300 1.925 1.630 0.424 Neighbours et al. (1958)

Periclase (MgO) 3.583 2.963 0.951 1.559 Anderson et al. (1966)

Periclase (at 298 K) 5.390 2.230 1.200 0.790

Pyrite (FeS2) 5.016 3.818 0.310 1.094 Simmons et al. (1963)

Halite (NaCl) 2.162 0.487 0.131 0.127 Lewis et al. (1967)

Name (composition) r C11 C12 C13 C33 C55 Reference

Hexagonal crystals
Apatite 3.218 1.667 0.131 0.665 1.396 0.663 Hearmon (1956)

Beryl 2.68 2.800 0.990 0.670 2.480 0.658 Hearmon (1956)

Biotite 3.05 1.860 0.324 0.116 0.540 0.058 Alexandrov et al. (1961)

Cancrinite 2.460 0.520 0.086 0.124 0.826 0.238 Alexandrov et al. (1961)

Muscovite 2.790 1.780 0.424 0.145 0.549 0.122 Alexandrov et al. (1961)

Phlogopite 2.820 1.780 0.3020 0.152 0.510 0.065 Alexandrov et al. (1961)

b-quartz (873 K) 2.533 1.166 0.167 0.328 0.104 0.361 Hearmon (1956)

Sphalerite (ZnS) 4.089 1.312 0.663 0.509 1.408 0.286 Klerk (1967)
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The temperature derivatives of elastic constants are determined by using the value at room

temperature and the harmonic value of the elastic constants. Commonly, elastic constants

decrease with temperature but, for MgO, NaCl and other halides, C12 values are seen to

increase with temperature.

The experimental values of second-order elastic constants, G and K (in

1012 dyes/cm2), of different minerals (polycrystals) at room temperature (298 K) were

obtained by Cheng (1974).

Name composition G K

(a-Cr2O3) 1.298 2.321

Almandine 0.951 1.765

Almandine 0.943 1.770

Sp.Almandine 0.966 1.756

Sp.Almandine 0.961 1.777

Spess-alm-pyrope 0.049 1.750

Hematite (a-Fe2O3) 1.213 2.088

Fayalite (a-Fe2SiO4) 0.536 1.220

Fayalite (b-Fe2SiO4) 0.815 2.050

Spinel (MgAl2O4) 1.080 1.972

Fe–spinel (FeAl2O4) 0.853 2.103

Magnetite (Fe3O4) 0.773 1.769

Magnetite (Fe2TiO4) 0.263 1.210

Ferrosilite (FeSiO3) 0.608 1.018

Forsterite (Mg2SiO4) 0.797 1.281

Enstatite (MgSiO3) 0.788 1.066

Ortho-pyroxene 0.686 1.041

(Mg0.5Fe0.5)SiO3

(MnFe2O4) 0.692 1.851

(NiFe2O4) 0.713 1.823

a-quartz (SiO2) 0.447 0.378

SiO2–rutile (SiO2) 1.696 2.93

Rutile (TiO2) 1.124 2.155

In a cubic crystal, there are only three unique elastic constants, C11; C12 and C44:
The shear velocity in the 100 direction is calculated from ðC44=rÞ1=2 and the compressional

velocity in the 100 direction from ðC11=rÞ1=2; where r is the density. The shear velocity in

the 110 direction is calculated from {ðC11 2 C12Þ=2r}1=2 and the compressional velocity

in the 110 direction from {ðC11 þ C12 þ 2C44=2r}1=2:
Values of A (equation (5-11)) greater than 1 signify that C44 is greater

than 1=2ðC11 –C12Þ; whereas the opposite holds when A is less than 1. For gold,

the elastic anisotropy is large; A ¼ 2:9 at ambient pressure. An extrapolation

of ultrasonic data suggests that this should increase weakly with pressure (Duffy

et al., 1999).

At the transition, the C112 2 C12 instability gives rise to an anomalous

decrease in the shear-wave velocity, which provides a seismic signature that could be

diagnostic of the presence of a separate phase (e.g., free silica in the deep mantle

and D00 zone).
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The estimates of elastic constants of minerals are generally taken from zero-

pressure experiments. However, the anisotropy can be strongly pressure dependent

(e.g., in MgO; Karki et al., 1997).

5.1.5.1. Cauchy relation and its violations

The Cauchy relation, defined as C12 2 C44 ¼ 2P; is valid when all inter-atomic

forces are central under static lattice conditions.

While studying MgO, Karki et al. (1997) observed that, as pressure increases, the

calculated value of C12 2 C44 2 2P decreases (Cauchy violation). The decrease

is relatively slow up to 100 GPa and then rapid between 100 and 150 GPa, as shown

in Fig. 5.1. The relatively faster decrease above 100 GPa is due to the slow increase

of C12 between 100 and 150 GPa. The initial pressure dependence of the

deviation from the Cauchy condition agrees fairly well with low-pressure ultrasonic

behaviour.

Since MgO remains a wide-gap insulator to pressures well beyond the deep-mantle

pressure (when covalent bonding or metallic bonding is less significant), the Cauchy

violations cannot be explained. The PIB model, with a zero-pressure value of 272 GPa for

C12 2 C44 2 2P; has also shown a very similar pressure dependence of the Cauchy

violation (Isaak et al., 1990).

Figure 5.1. Pressure variation of the Cauchy violation in MgO. The circles represent the calculated values. The

first-order extrapolation from ultrasonic data (Jackson and Niesler, 1982) is shown by the dashed line (Karki et al.,

1997; q 1997 Mineralogical Society of America).
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5.1.6. Born’s stability criteria: B1; B2 and B3

The mechanical stability of crystal lattices can be estimated from their elastic

moduli by the so-called Born’s stability condition based on the elastic lattice energy

(Binggelli et al., 1994). For the stability of a trigonal lattice, the following three conditions

need to be satisfied:

B1 ¼ C11 2 lC12l . 0;

B2 ¼ ðC11 þ C12ÞC33 2 2C2
13 . 0

B3 ¼ ðC11 þ C12ÞC44 2 C2
14 . 0: ð5-12Þ

For the elastic stability of a phase, the determinant as well as sequential principal

minor of the matrix of elastic stiffness coefficient ðcijÞ must be greater than zero

The first condition, B1 . 0; ensures stability with respect to the elastic waves in the

basal plane perpendicular to the c-axis; B2 . 0 implies positive compressibility and B3 .

0 is associated with shear acoustic modes in the y–z-plane (Terhune et al., 1985). When

one of these moduli vanishes, the initial crystalline structure becomes homogeneously

unstable against the corresponding fluctuations.

Under a given P; T condition, the lattice is elastically stable when all the three

conditions of elastic moduli are satisfied.

The values of the three parameters ðB1; B2 and B3Þ can be estimated from the

calculated elastic moduli under compression.

For trigonal quartz-type phases at ambient pressure, six calculated values (in GPa)

obtained by different workers are

C11 C33 C44 C12 C13 C14 Reference

55.1 123.0 26.2 18.1 22.2 24.2 Tsuchiya et al. (2000)

64 118 37 22 32 2 Grimsditch et al. (1998)

Both B1 and B2 parameters increase regularly with pressure and are positive in all

pressure ranges up to the transition. However, B3; which indicates the shear stability of the

lattice, decreases and becomes zero at ,7 GPa as a result of decrease in C44 with pressure

(Fig. 5.2; Tsuchiya et al., 2000). The stability condition vanishes near the transition

pressure. This indicates that lattice instability from the shear softening of the quartz-type

lattice is induced by pressure (e.g., a-quartz study by Binggeli et al., 1994).

Tse and Klug (1991) reported a sudden decrease in the modulus B2 as a function of

time at the critical pressure. For a trigonal structure, B2 can be related to the stability of

volume compressibility which is given by

ðC11 þ C12 2 4C44 þ 2C33Þ=B2: ð5-13Þ

A discontinuous volume reduction is seen to occur at the first-order transformation

because the decrease in B2 to zero corresponds to the divergence in compressibility.
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Hence, the violation of the condition B2 . 0 can be considered as caused by the

transformation.

For quartz, B2 softens at 22.3 GPa. For ice, B1 and B2 soften at the pressure of

,0.9 GPa when becomes amorphous. This observation may suggest the question: Is an

amorphous phase a consequence of mechanical melting? MD calculation showed that, at

,22.3 GPa, a-quartz would show an abrupt softening of B2: This softening is due to

transition to a disordered phase. Employing first-principles pseudopotentials, it is seen that,

at ,30 GPa, B3 softens but B1 and B2 stiffen with pressure (Bingelli and

Chclikowsky, 1992).

Figure 5.2. Calculated Born’s parameters of quartz-type lattice with pressure. The B1; B2 and B3 values are

shown in (a), (b), and (c) by solid circles, respectively. Earth value estimated from experimental

measurements is also plotted by an open circle. The lattice is elastically stable if these parameters are positive.

The B3 value decreases with pressure at 2 GPa and changes to negative near to amorphization pressure at

7 GPa. The result is related to the negative correlation of C44 with pressure (Tsuchiya et al., 2000, q

Springer-Verlag).
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The result of Born’s stability criteria indicated that the volume collapse of the

quatz-type lattice with pressure-induced transformation originates from pressure-induced

shear elastic instability. The effect of the shear stress field decreases transition pressure and

enhances lattice instability as well as the uniaxial stress field. The quartz-type structure

transforms to the rutile-type structure on decompression when sxy is imposed (Tsuchiya

et al., 2000).

5.1.7. Thermoelasticity

From the experimental P–V –T data, the thermoelastic parameters can be derived

using a high-temperature Murnaghan EOS. Based on the thermodynamic identity

KTðP; TÞ ¼ 2V
dP

dV


 �
T

ð5-14Þ

and with KTðP; TÞ expressed as (isothermal T ¼ 300 K):

KTðP; TÞ ¼ KT0
þ K 0

T0
P þ dKT

dT


 �
0

ðT 2 300Þ þ d2KT

dP dT


 �
PðT 2 300Þ ð5-15Þ

The P–V –T relation can also be defined by equation

VðP; TÞ ¼ VðO;TÞ 1 þ b

a
P


 �21=b

; ð5-16Þ

where

a ¼ KT0
þ dKT

dT


 �
0

ðT 2 300Þ

and

b ¼ K 0
T0

þ d2KT

dP dT


 �
0

ðT 2 300Þ

At high temperatures and pressures, a nearly uniform behaviour of a number of

thermoelastic parameters of oxides and silicates has been noted in experimental and

theoretical investigations. Above the Debye temperature, the product aKT has been

observed to be independent of temperature and pressure.

Important thermoelastic parameters such as the temperature derivative of bulk

modulus, dK=dT ; the pressure derivative of thermal expansion, da=dP; and Anderson–

Grüneisen parameter, dT; need to be derived experimentally at simultaneous high

pressures and temperatures. These thermoelastic parameters can be derived from

measurements of volume change of the crystallographic unit cell at simultaneous high

pressures and temperatures. Recent breakthroughs in high P–T single crystal X-ray

diffraction using a diamond-anvil cell (Zhao et al., 1995) provide most accurate
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measurements of unit-cell dimensions at uniform temperature and sustained hydrostatic

pressure.

5.2. Atomic vibrations in crystals: phonon-s

In crystals, atomic vibrations propagate as weakly interacting waves with wave

vector k and frequencies vjðkÞ: To each wave, one can assign an oscillator with frequency

vjðkÞ:
Phonon-s. Each wave can behave as a particle (de Broglie) with energy equal to

�vjðkÞ and momentum p equal to �k: This quasi-particle, called a phonon-, is an

elementary component of sound energy with frequency v; just as a photon is related to

light (electromagnetic) energy. (Thus, wave ! quantum oscillator ! phonon-s.)

Phonon- gas. A solid may be conceived as a box containing phonon- gas and, like

molecules in ordinary gas, phonon-s collide with one another. The energy of phonon- gas is

the sum of the energies of individual phonon-s but the collision of phonon-s does not

conserve momentum. However, a crystal lattice does not always participate in the

collisions of phonon-s.

As the temperature falls, the number of high-momentum phonon-s becomes smaller

and smaller. At T pQ (Debye temperature), almost all phonon-s are close to the centre of

the first Brillouin zone.

By combining the dependence of heat capacity and mean free path on temperature,

one obtains

J , T3 expðQ=TÞ:

Near absolute zero, the mean free path is enormously large. Even at extremely low

temperature, the number of phonon-s in a crystal is enormous, e.g., at ð1=10ÞQ (tenth

Debye) temperature. About 1020 phonon-s are present per cubic centimetre.

The phonon- gas is the main heat reservoir of a solid but the number of phonon-s in

a solid is not constant. High temperatures create more phonon-s and the number of phonon-

s is proportional to (the third power of) temperature. However, most of the phonon-s have

energies close to kBT :
There are acoustic and optical phonon-s. The velocity of phonon-s corresponds to

the speed of sound. A study of resonance absorption of light in a crystal would reveal the

properties of optical phonon-s.

Neutron scattering and phonon- study. Low-momentum phonon-s are ordinary

sound waves. Hence, by studying sound propagation in crystals, the properties of

individual phonon-s can be studied. The inelastic scattering of neutrons in crystals

provides very important information on phonon-s. In its motion through a crystal, a neutron

makes the atoms “swing” and creates sound waves and its own energy is lowered. The

change in the neutron’s energy is equal to the phonon-’s energy. This is what follows from

the dispersion law of phonon-s. Employing high-energy neutron sources, the obtained

phonon-’s energy spectra reveal the construction of solids.
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5.2.1. Elastic waves in crystals

The longitudinal ðVPÞ and shear ðVSÞ wave velocities of isotropic aggregates are

given by (see Section 2.6.2):

VP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4=3G

r

s
; VS ¼

ffiffiffiffiffiffi
G

r

s
ð5-17Þ

where r is the density and K and G are isotropic bulk and shear moduli, which are

determined from the single-crystal elastic constants ðCijÞ using the Hashin–Strikman

averaging scheme shown by equation (5-7). The bulk sound velocity is given by

(see Section 2.6.2)

VB ¼
ffiffiffiffiffiffi
K

r

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

P 2
4

3

r
V2

S ð5-18Þ

Temperature is expected to lower the density and seismic wave velocities, while addition

of Fe will increase the density and decrease the seismic-wave velocities.

The seismic-wave velocities of periclase in the lowermost part of the lower mantle

are lower than those of Mg-silicate perovskite by 3–5%. Additional Fe has a strong effect.

Magnesio-wustite with XFe ¼ 0:20; a value appropriate for a pyrolite bulk composition,

has a shear velocity that is 15% lower than that of MgSiO3 perovskite.

It should be possible to detect a number of minor or secondary phases in the lower-

mantle magnesiowüstite, CaSiO3 perovskite and SiO2 silica — all have distinctive wave

velocities and should be seismically distinguishable.

5.2.1.1. Shock waves
Shock waves are intense compressional waves of short duration (typically

,1026 s) created by the high velocity of projectiles or by intense light pulses. Shock

pressures can be high, exceeding 600 GPa. Shock pressure may accompany high

temperatures ,2,000–15,000 K.

Shock-pressure measurements may involve P–V –T EOS. The data are based on

Rankie–Hugoniot equations that follow from conservation of momentum, mass and

energy in response to the impact. The observable quantities are US and UP; VS is the shock-

propagation speed and VP the particle speed. The shock speed VS is measured by timing the

shock propagation over a known distance. The particle velocity VP is inferred from

collision properties of the impact or from the observation of free-surface velocity as the

shock wave emerges from the shocked material.

Shock measurements can be made for electrical resistance, laser X-ray diffraction

and spontaneous and coherent Raman scattering. Each shot in a shock experiment

generates one point in the EOS.

Shock waves in crystals. To study true shock waves at the atomistic level, non-

equilibrium molecular dynamics (NEMD) simulations with Newton’s equations of
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motion are solved on the computer for thousands of strongly interacting atoms (Straub

et al., 1980). True shock waves exhibit steady profiles (density, velocity, stress and

energy) which accompany dissipative, irreversible flow of atoms in the direction

transverse to the planar-wave propagation. The NEMD profiles could also be

explained by a continuum constitutive model, which uses Navier–Stokes equations of

hydrodynamics.

Planar shock waves in a single crystal become steady waves through transverse

displacements of atoms, not by viscous flow as in fluid shock waves (Hoover, 1979) but

rather by plastic flow through the concerted slippage of atoms over each other.

In the Lennard–Jones (LJ) pair-potential solid, represented by fcc lattice, a

shock wave travelling in the (100) direction would result in slippage along one of the

four available [111] planes through emission at the shock front of a Shockely partial

dislocation. The wave leaves behind a stacking fault (the usual ABCABC… stacking

of a triangular-lattice, when the close-packed planes become ABABCA). For steady

planar shock waves, depending on their strength, the Hugoniot relation offers a general

statement of mass, momentum and energy conservation linking a given initial

equilibrium state.

To obtain the sound velocities from acoustic-mode formation, the following

relation can be used:

V ¼ V0

w

w0


 �
a

a0


 �
ð5-19Þ

where the subscript zero represents values at one atmosphere.

Velocities vs. pressure can be used to calculate the pressure dependence of the

elastic moduli from the relation

KS ¼ rðV2
P 2 4=3V2

SÞ; G ¼ rV2
S ð5-20Þ

where KS is the adiabatic bulk modulus, G the shear modulus and r the density.

5.2.1.2. Shock velocity and particle velocity
In shock-wave measurements, the paired variables are particle velocity ðUpÞ and

shock velocity ðUsÞ; from which, and with HugonistEOS, the pressure–density relations

are calculated.

A new pair of variables has been chosen to improve the accuracy of primary

calibration of anvil devices. They are the density ðrÞ measured with XRD and the acoustic

velocity ðVfÞ measured with the ultrasonic method or Brillouin scattering on the same

sample under the same compression (Mar and Hemley, 1998).

Pressure is derived from

P ¼
ð

V2
f dr

The resultant P–r relation is a primary pressure standard.
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The metastable pressure–volume Hugoniot data may be converted to the

corresponding shock-velocity– particle-velocity ðVS –VPÞ data using the relation

(Liu, 1975):

VS ¼ V0½Pm=MðVm
0 2 VmÞ�1=2 ð5-21Þ

VP ¼ ½PmðVm
0 2 VmÞ=M�1=2 ð5-22Þ

where Pm and Vm are the metastable Hugoniot pressure and volume, respectively, Vm
0 the

initial volume of the high-pressure phase and M the molecular weight. It has been shown

by Ruoff (1967) that the data in the VS –VP plane can be represented by

VS ¼ C0 þ sVP þ s0V2
P ð5-23Þ

and, if an EOS is assumed to have the following form:

KS ¼ KS
0 þ KS0

0 P þ 1=2KS00

0 P2 ð5-24Þ

then

KS
0 ¼ r0C2

0

and

KS0

0 ¼ 4s 2 1

where KS
0 is the isentropic bulk modulus at zero pressure, KS0

0 is its first pressure derivative

evaluated at zero pressure and r0 is the initial density.

The method of converting the experimental Hugoniot to a new Hugoniot, centred at

a different initial condition, was demostrated by McQueen et al. (1963). In doing so, they

obtained

Pm ¼
Pe 1 2

g

2

Vm

Ve
2 1


 �� 	
2

g

V1
ðEe

0 2 Em
0 Þ

1 2
g

2

Vm
0

Ve
2 1


 � ð5-25Þ

where P; V; E and g are the pressure, volume, specific internal energy and the Grüneisen

parameter, superscripts “e” and “m” denote the experimental and metastable Hugoniots

and subscript zero represents the initial condition. Some quantities have to be evaluated

before calculations from the foregoing equation can be performed. Firstly, determine the

change of the specific internal energy between the starting material and the high-pressure

phase at zero pressure:

DEtr ¼ Ee
0 2 Em

0 ¼ P½ðVm 2 VeÞ þ ðVm
0 2 Ve

0Þ�=2 ð5-26Þ

assuming that the temperature effect is negligible.
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5.2.1.3. Shock-induced transitions
Shock-induced phase transitions are observed by noting: (i) the breaks or

discontinuities in the shock velocity ðVSÞ–particle velocity ðVPÞ curves, (ii) the abrupt

changes in sound velocity, (iii) the multi-wave structure in wave profiles of pressure or

particle velocity and by analyzing the shock-recovered samples.

The shock-treated sample data are compared with those obtained from in situ

experiments to know if the observed discontinuity in the Hugoniot P–V curve indicates

any new phase not observed by an in situ experiment. On the P–V –T surface, the shock

Hugoniot function chalks out a path different from an isotherm in static experiments.

Lattice disorder is observed in diverse minerals induced by stresses #30 GPa (Horz and

Quaide, 1973). Pronounced lattice disorders for quartz and plagioclase felspar are observed

when shocked to ,22 GPa (Cygan et al., 1992). Conversion of graphite to diamond occurs

in rocks shocked to ,30 GPa, at a pressure distinctly short of melting (e.g., Koebertl et al.,

1995).

Most oxides and silicates (excepting MgO and Al2O3) undergo shock-induced

phase transitions in pressures up to 200 GPa (Ahrens, 1980).

Shock-induced phase transition can be of reconstructive or non-reconstructive type,

depending on whether the transition involves atomic diffusion or not. The latter type may

be completed within a micro-second time scale of a shock experiment. Martensite or

electronic transition belongs to this type. The martensitic nature of B1–B2 transition in

NaCl shocked parallel to [111] occurs at pressure lower by 4 GPa than that shocked

parallel to [100] (Fritz et al., 1971).

In shock compression of Fe3O4 and a-Fe3O3, the transition is due to a change in

configuration from a high-spin state to a low-spin state. Mössbauer spectroscopic (and

XRD) study in DAC showed a transition to a non-magmetic state at ,50 GPa (Mao et al.,

1977). The volume change accompanying phase transition is predicted to be 13% based on

the density-cation radius systematics of the corundum structure. Both the crystal-field

splitting ðDÞ and the spin-pairing energy ðpÞ depend on the volume (Goto et al., 1982).

Under pressure, the following relations with the inter-atomic distance ðrÞ are assumed:

D/ r23:0

p/ r1:3

Shock-compression experiments have been performed on a single crystal of

forsterite (Mg2SiO4) up to 170 GPa (by Syono et al., 1981). Extraordinary high values of

HEL (up to 12 GPa) were found to be direction dependent. The onset of phase transition

was at ,50 GPa, which is much higher than those known high-pressure transformations in

static experiments, such as ,20 GPa for olivine to modified spinel or to spinel transition

(Akimoto et al., 1976) and below 30 GPa for post-spinel dissociation to ilmenite or

perovskite type MgSiO3 plus MgO (Ito et al., 1982). The mixed phase region persists up to

,100 GPa, where the shocked state merged into the high-pressure regime (Syno, 1984).

Reconstructive-type phase transformations under shock compression preferentially

occur along the shear zone where temperature is high enough to promote the

transition, resulting in very heterogeneous textures in the shock-recovered materials.
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A heterogeneous yielding model has been developed for brittle, low thermal conductivity

materials, in which dynamic yielding occurs along the stress-concentrated sheared zone

(Syono, 1984).

5.3. Inelastic and non-hydrostatic states

From the 1920s, pioneers such as P.W. Bridgman, D. Griggs, H. Heard, M. Paterson,

W. Brace et al. worked on minerals and rocks under high-pressure–high-temperature

conditions. These involved inelastic processes such as brittle fracture, frictional sliding,

plastic deformation and dynamic metamorphism. The results have been applied to handle

diverse problems related to the rheology of Earth’s materials, such as the flexure of the

lithosphere, metamorphic textures, post-glacial rebound, deformation under partial

melting, forces driving plates, the physical nature of earthquake sources, seismic

anisotropy and so on. It is, however, now more clearly known that non-hydrostatic stresses

generated in high-pressure phase transitions are responsible for deep-focus earthquakes

(Kirby et al., 1991).

5.3.1. Stress states

A solid sample placed between a pair of flat faces of perfectly rigid anvils will

experience stress states which can be expressed along a set of three orthogonal axes ðx1; x2

and x3Þ: The x1 and x2 axes are in a plane parallel to the anvil face, and x3 is along the load

axis. The centre of the anvil face is taken as the origin of the coordinates. For circular anvil

face, the stress state is cylindrically symmetric about the x3 axis. Thus, the stress component

s11 equals s22: For a finite shear strength of the sample,s33 $ s11: Since the anvil faces are

flat and parallel, the stress gradient in the direction of applied load (x3 axis) is absent.

The maximum shear stress for von Mises criterion of yielding leads to the relation

s33 2 s11 ¼ t ¼ 2ty ¼ sy

where t; ty and sy are, respectively, the uniaxial stress component, shear strength and yield

strength of the specimen. And the pressure sr ¼ ðs11 þ s22 þ s33Þ=3 ¼ ðs11 þ t=3Þ
ð{ s11 ¼ s22Þ: The value of t can be determined from the diffraction data.

The stress at the origin of the coordinates is given by a tensor:

sij ¼

s11 0 0

0 s11 0

0 0 s33

0
BB@

1
CCA ¼

sr 0 0

0 sr 0

0 0 sr

0
BB@

1
CCAþ

2t=3 0 0

0 2t=3 0

0 0 2t=3

0
BB@

1
CCA

¼ sr þ Dij ð5-27Þ

The second term in equation (5-27) is the deviatoric stress component. The strain

produced by sij is a superposition of stress components. As the load on the anvil is
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increased, sr increases and can reach a few hundred gigapascals. The magnitude of t is

normally a few % of sr: The strain produced by Dij is small and is adequately described

by linear elasticity theory. The adequacy of the linear elasticity theory is linked to

the precision of the lattice strain measurement, which is at best one part in 10,000

(Singh et al., 1998).

5.3.1.1. Non-hydrostatic stress
Under conditions of uniaxial non-hydrostatic stress, a phase transformation (or

distortion) could be observed to occur at a lower pressure than it would under hydrostatic

conditions. Experimentally, this has been shown by Zou et al. (1981).

The pressure-induced phase transition is reflected by changes in diffraction patterns.

It is possible to detect small distortions in the unit cell caused by the deviators from the

hydrostatic condition of the stress acting on the sample.

The measurement of unit-cell dimensions as a function of pressure gives the

pressure–volume relation (i.e., EOS) of a solid sample.

Ostapenko (1971) has shown that, for two polymorphs in hydrostatic equilibrium,

the denser modification will become more stable if a uniaxial stress of significant

magnitude is applied. A similar result has been shown to be true for second-order

transitions where the more rigid form (higher bulk and shear moduli) becomes the stable

phase if a sufficiently large uniaxial stress is applied (Ostapenko, 1973).

Under conditions of non-hydrostatic stress, the concept of thermodynamic

equilibrium is not valid. The local phase equilibria differ depending on the orientation

of the phase interfaces to the stress and, therefore, transformations occurring under

non-hydrostatic stress cannot strictly be located on an equilibrium-phase diagram.

Differential stress: examples. The rheological constraint at depth involves measurement

of small differential stresses at high P–T : Stress measurements at depth along the

San Andreas fault system suggest that plate-scale motion may result from shear stresses as

small as 10–20 MPa (Hickman et al., 1988).

Microstructures of mantle xenoliths suggest that, with depth, as temperature and

mean stress increase, the differential stresses decrease from ,15 to ,5 MPa. (Note: At

70 km, mean stress is 2.2 GPa.) This is attained by large-scale isostatic adjustments

(Hager, 1990) and by the shape of the Earth’s geoid (Jeffreys, 1963). Moreover, the flow

strengths of crystalline solids weaken exponentially with temperature. (Note: At high

pressure, quartz may get weakened hydrolytically.)

Deviatoric stress. Deviatoric stress is the total stress with 1/3 the trace (sum of the

diagonal terms) subtracted from each of the diagonal terms. When the stress is deviatoric,

the sum of the principal stresses is zero. This reflects the shape-altering stresses and is the

driving force field for flow. A purely deviatoric stress can be represented in a coordinated

system where all the diagonal terms are zero and the off-diagonal terms are non-zero.

Deviatoric stress can be measured in multi-anvil apparatus from the broadening of

XRD lines. Uniaxial compression in DAC can ideally be used for quantitative study of

deviatoric stress at ultra-high pressures (Singh et al., 1998).
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The uniaxial component or deviatoric stress is a measure of t ¼ ðs1 2 s3Þ: The

yield and shear strengths of a material, designated as sy and t; are related to the maximum

t; which the material can support as sy ¼ 2t ¼ t: This equility (Von Mises condition) is

satisfied only when the material is observed to deform under pressure. In high-pressure

experiments, the assumption commonly used is that t ¼ sy:
Shear stress ðtÞ is determined from the measurement of pressure gradients on the

sample (in a DAC) by

t ¼ ðh=2ÞdPðrÞ=dr

where h is the sample thickness. This analysis depends critically on the shape of the

diamond in the pressure cell and is only valid when the diamonds remain flat (no cupping)

and the sample continues to flow under loading (Spitzig and Leslie, 1971).

The stress difference between materials (assuming that the stress is equivalent to the

pressure) is obtained from the EOS of each material. This approach significantly

overestimates the deviatoric stress because it neglects the effect of the shear modulus on

the measured differential strains (Meng and Weidner, 1993).

Gold standard. The effect of deviatoric stress (i.e., departures from hydrostaticity) on the

unit-cell volume measurement and further on the volume-based pressure calibration is

directly proportional to K=G of the measured material (Meng et al., 1993). As gold has an

unusually high value of K=G (6.2) compared with most samples (1–2), the measurement

of the unit-cell volume of gold is very sensitive to the existence of even a small amount of

deviatoric stress. At RT; the deviatoric stress in gold increases with increasing pressure

above 15 GPa. By 30 GPa, the calculated deviatoric stress is above 0.6 GPa. The deviatoric

stress decreases dramatically with increasing temperature and disappears by a temperature

of about 650 K. The pressure dependence of the uniaxial stress t for gold is obtained as

t ¼ 0:06 þ 0:015P;

where P is the pressure in GPa in (Duffy et al., 1999).

The method for determining the deviatoric stress in a diamond-anvil cell, the

deviatoric stress in gold as a function of pressure and temperature and also the deviatoric

stress effect on the volume-based pressure calibration have been discussed by Meng et al.

(1993). The elastic moduli of gold as a function of pressure is shown in Fig. 5.3b.

5.3.2. Crystallographic shear

Anion-deficient non-stoichiometry is accommodated in certain transition-metal

oxides by eliminating point defects by the so-called crystallographic shear, cs, which

provides a means of accommodating anion-deficient non-stoichiometry without introdu-

cing point defects and without change of cation coordination. Crystallographic shear

phases can be regarded as translation modulations of the parent structure, the translation

boundaries being cs planes.
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In the ordering of shear planes, elastic strain appears to play a crucial role.

Extensive relaxation around the shear planes seems essential for stabilizing some

structures. Isolated cs planes offer solid–solid interfaces.

5.3.2.1. Shear and deformational twinning
The extensional axis ð11Þ is parallel to ½�101� in the (101) plane of the tetragonal

phase of cristobalite. This plane consists of distorted six-membered tetrahedral rings, and,

in the high-temperature cubic phase, becomes a pseudo-close-packed (111) plane. This

direction is equivalent to ½�1�12�; the slip direction for the smallest possible “shear” of the

{111} layers. The cristobalite I ! cristobalite II phase transition can, therefore, be viewed

as a shear of the crystal structure. This involves the sliding of adjacent close-packed sheets

against each other, much like the martensitic-type transformation in close-packed metals.

Palmer and Downs (1991), in their single-crystal diffraction work on the high-

pressure phase of cristobalite, observed splits in single-crystal diffraction peaks (measured

in v and v=2u scans), indicative of deformation twinning. These deformation twins are

distinct from the tetragonal to monoclinic transformation twins. However, a co-existence

of both high- and low-pressure phases within the hysteresis region has been observed in

single-crystal X-ray experiments (Downs and Palmer, 1994) and in Raman spectroscopic

studies (Palmer et al., 1991).

5.3.3. Strain anisotropy in crystalline mass: e.g., hcp iron

Radial XRD (RXD) measurements (vide Section “Radial X-ray diffraction (RXD):

deviatoric stress” of Chapter 4) provide single-crystal elasticity information (Singh et al.,

1998a,b). In a laboratory experiment, the stress (non-hydrostatic) state of a sample is

determined by compressing the sample between the two anvils and by employing the RXD

technique.

Figure 5.3. The elastic moduli of gold as a function of pressure. (a) second order elastic moduli of gold as a

function of pressure. The doted lines show finite strain extrapolations of ultrasonic data (Hiki and Granato, 1966)

while the simple lines are obtained from study up to 37 GPa. The vertical axis stands for Cij (GPa). The symbols

show individual data points and solid lines are finite strain fits (Birch, 1978) to the present data combined with

ambient pressure data (Hiki and Granato,1966). Uncertainties are one standard deviation.
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The results from RXD (zero-frequency) and multi-anvil (ultrasonic frequency)

measurements show good correspondence, bracketing a wide frequency range including

seismic waves. The K=G ratios obtained for hcp iron by the two methods under different

pressure experiments are (Mao et al., 1998):

Method Pressure (GPa) K=G

RXD 20–39 2.7 ^ 0.7

Ultrasonic 16.5 2.68 ^ 0.1

In the RXD measurements on hcp iron (Mao et al., 1998) the strong ðhklÞ
dependence of lattice strain reflects a strong elasticity anisotropy or an ðhklÞ dependence of

stress (Singh and Balasingh, 1994).

A strong hkl dependence of t; defined as t ¼ s3 2 s1 ¼ 1:5ðs3 2 srÞ (s3 ¼ axial

stress; s1 ¼ radial stress) in the polycrystalline specimen may partially or fully account for

the observed lattice-strain anisotropy. Again, the development of the basal plane slip

texture common in hcp metals could conceivably lower the t of grains with their c-axis at

458 orientation.

The integrated study by Mao et al. (1998) reveals that the Earth’s inner core may

represent the low shear modulus of hcp iron close to melting or the existence of additional

components with low shear-wave velocities but with similar densities.

The seismic VS of the inner core is lower. If this softening of VS represents possible

Born–Durand pre-melting effects (Tallon, 1979) or partial melting, the observed shear

values would constrain the inner-core temperature to near-melting. The attenuation of

seismic waves may be affected by near-melting softening or by the presence of additional

low-velocity phases in the inner core.

Theories predict a small VP anisotropy (4% faster in the c than in the a direction) of

the inner core. This requires a perfect alignment of hcp iron crystals or the presence of a giant

single crystal (Stixrude and Cohen, 1995). A partial alignment of hcp iron crystals may be

sufficient for accounting the magnitude of the inner-core anisotropy (Mao et al., 1998).

5.4. Spontaneous strain

In phase transition, the spontaneous strain, 1; is defined in terms of the lattice

parameters. For example, for a cubic to tetragonal phase transformation, if the cubic phase

has lattice parameter a0 while the tetragonal phase has parameters a and c; the spontaneous

strain 1 is measured as

1 ¼ ða 2 a0Þ=a0

which is proportional to Q2

If in the transition there is no change in the translational symmetry and the unit cell

merely changes its shape, no extra reflection would appear in the diffraction pattern. In

such a case, if no extra points appear in the reciprocal lattice, the transition does not

involve a change in the boundaries of the Brillouin zone. This type of transition is called a

zone-centre transition, where 1/ Q holds.
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In cases where the translational symmetry changes with changes in the reciprocal

lattice and the boundaries of the Brillouin zone, they are called zone-boundary transitions.

Here, the relation 1/ Q2 commonly holds. When, in the transition (e.g., cubic )

tetragonal), a reduction in translational symmetry and the formation of a superlattice occur,

the relation 1/ Q2 holds.

The symmetry of the low-temperature form must be a subgroup of the

high-temperature symmetry. In other words, the low-temperature form is derived from

the high-temperature form by a loss of some symmetry elements, i.e., the structures are

topologically similar.

Excess free energy, expressed as G rather than DG; is defined as the excess over that

which the high form would have if the phase did not occur. Usually, the excess quantities

are stated as G; S; etc., rather than DG; DS; etc.

5.4.1. Spontaneous strain and order parameter

For a displacive phase transition involving a supergroup to subgroup relation, the

order parameter, Q; may couple to the lattice strain. The resulting excess lattice distortion

is characteristic of the phase transition and is usually expressed as the spontaneous strain, 1

(Carpenter, 1992).

The spontaneous strains for a tetragonal ! orthorhombic transition are given by

11 ¼ ða 2 aoÞ=ao
12 ¼ ðb 2 aoÞ=ao

and

13 ¼ ðc 2 coÞ=co

where a; b and c are lattice parameters of the orthorhombic phase, while ao and co are

linear parameters of the tetragonal phase extrapolated into the stability field of the

orthorhombic phase for P42=mnm ! Pnnm (Carpenter et al., 2000) transition, which is

pseudo-ferroelastic in nature (Wadhawan, 1982).

The symmetry-breaking strain is

ð11 2 12Þ ¼
a 2 b

ao

;

which is proportional to the order parameter Q:
The volume strain is given by

Vs ¼ ðV 2 VoÞ=Vo;

where V is the unit-cell volume of the orthorhombic phase and Vo is the volume of

the tetragonal phase. For small strains, Vs; 11; 12 and 13 are related approximately as

Vs ¼ 11 þ 12 þ 13:
Of great current interest is the transformation in dense SiO2 (stishovite) from the

rutile to a CaCl2-type structure ðP42=mnm ! PnnmÞ; which is thought to be a classic

displacive transition (Karki et al., 1997d). Single-crystal XRD measurements near
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50 GPa pressure in quasi-hydrostatic media have proven the P42=mnm ! Pnnm

transition, which is largely displacive but exhibits hysteresis indicating weak first-

order character. A Landau model has been developed that quantitatively relates all of the

spectroscopic, elastic, structural and thermodynamic data for the Si–O system. The

elastic instability at the transition gives rise to anomalies in the Raman spectrum,

which are expected to be a general feature of such pressure-induced transition

(Hemley et al., 2000).

Since Q can never be measured directly, measurements of macroscopic properties,

such as the spontaneous strain, are essential for the thermodynamic description of the

phase transitions. This is illustrated below with a case of tetragonal to monoclinic

transition seen under pressure (Cristobalite I ! II; Palmer and Finger, 1994).

For the phase transition 422 ! 2, the active representation is of type E (Salje, 1990),

comprising an orthogonal pair of basis functions (see Table 5.4). The xzð13Þ basis function

describes a shear parallel to a; such that the angle b departs from 908. The tetragonal

condition a ¼ b is relaxed in the monoclinic system and so an addition of improper strain

is allowed, involving extensions or contractions parallel to these two axes (i.e., non-zero 111

and 122). The strain is subject to the constraint that there shall be no net volume change and,

therefore, the condition to be satisfied is 111 ¼ 2122 (Palmer and Finger, 1994).

The alternative basis function yz ¼ 2xzð15 ¼ 214Þ is a shear parallel to [110], i.e.,

the ð1�10Þ plane of the tetragonal cell, leaving a unique (diad) axis perpendicular to the

ð1�10Þ shear plane. There is no longer any constraint for g ¼ 908 and so an additional

improper strain, 112; is allowed. The resulting unit cell has a ¼ b ¼ g – 908 (because of

123 and 113). This is better described by a conventional monoclinic unit cell, with b

perpendicular to the ð1�10Þ shear plane of the tetragonal phase and with a and c lying within

this plane. It can be clearly seen that the deformation can be described by the xz-basis

function but not by the yz–xz basis function.

Palmer and Finger (1994) described the spontaneous strain that violates the

symmetry of the super group 422. In addition to this symmetry-breaking strain ð1sbÞ; extra

and non-symmetry-breaking strains ð1nsbÞ are allowed, which couple to the A

representation of 422. These strains do not affect the off-diagonal (shear) terms of the

TABLE 5.4

Spontaneous strain relations for the subgroup 422 (after Salje, 1990)

Active Repn. Sub-group Spontaneous strain No. of elastic domains Basis functions

Proper Improper

A2 4 1 Z

B1 222 11 ¼ 212 2 ðx2 2 y2Þ
B2 222 16 2 xy

E 2 15 11 ¼ 212 4

E 2 15 ¼ 214 16 4 x, y, xz, yz

E 1 14; 15 16; 11 ¼ 212 8

Note: The monoclinic subgroups correspond to an orientation with the unique axis parallel to [010].
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strain tensor but may modify the on-diagonal terms and, hence, the unit-cell volume.

One can expect symmetry-breaking strains parallel to a and b; but not c: Therefore, the

axial strains may be expressed as

111 ¼ 1nsb
11 þ 1sb

11

122 ¼ 1nsb
22 þ 1sb

22 ð5-28Þ

133 ¼ 1nsb
33

The non-symmetry-breaking strains must conform to the high-symmetry point

group 422 and, therefore, the condition becomes

1nsb
11 ¼ 1nsb

22 – 1nsb
33 :

The relation between two symmetry-breaking strain components (i.e., for no volume

change) is

1sb
11 ¼ 21sb

11:

From these relations one arrives at the following:

1nsb
11 ¼ 1

2
ð111 þ 122Þ ð5-29Þ

1sb
11 ¼ 1

2
ð111 2 122Þ:

The phase relation involves a shear plus a volume change. The measured strain

tensor, S; can, therefore, be separated into a symmetry-breaking tensor:

S ¼

111 0 113

111 122 0

111 122 133

0
BB@

1
CCA ¼

1
nsb
11 0 0

1nsb
11 1nsb

11 0

1nsb
11 1nsb

11 133

0
BB@

1
CCAþ

1
sb
11 0 113

1sb
11 21sb

11 0

1sb
11 21sb

11 0

0
BB@

1
CCA ð5-30Þ

The symmetry-breaking strain tensor may be diagonalized to reveal the orientation

(i.e., the shear plane) and magnitude of the corresponding strain ellipsoid.

5.5. Strain tensor

Under a hydrostatic pressure, the change in the unit-cell parameters makes up the

strain and this phenomenon is represented by a second-rank tensor (Nye, 1957). From each

increment of pressure, the strain can be calculated (with certain uncertainties).

The three principal coefficients of the strain, 11; 12 and 13 (conventionally,

l11l . l12l . l13l) obtained by diagonalization of the strain tensor represent the fractional

change in length along the principal axes of the strain tensor. The isothermal linear
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coefficient of volume compressibility, b; is given by

b ¼ Vo 2 Vp=Vo ¼ 2ð11 þ 12 þ 13Þ ð5-31Þ

since for compression the principal strains are all negative.

For second-rank tensors, the visualized strain surface is an ellipsoid with principal

axes of length ð1 þ 11Þ; ð1 þ 12Þ and ð1 þ 13Þ:
In monoclinic felspars, the three principal strains are unequal and one of the

principal axes is along the diad b-axes. Hence, the other two principal axes must lie in the

(010) plane. It is seen that in alkali felspars about 60–70% of the volume compression is

brought about by a linear compression along the (100) plane normal. However, the same

degree of anisotropy is observed in plagioclases.

5.6. Bulk modulus of ionic compounds

Under ambient conditions, the bulk modulus of ionic compounds is given by a

general relationship:

K / ZaZc=V

where Za and Zc; are the formal anion and cation charges, respectively, and V is the specific

volume per ion pair (Anderson and Nafe, 1965).

Under pressure, packing efficiency increases at phase transition, when the cation

coordination number ðNcÞ increases. As the structure becomes more compact, compression

becomes increasingly difficult and the bulk modulus rises. High-pressure phases may thus

be hard materials. The archetypal example is the transformation of graphite to diamond or

of quartz to stishovite.

5.6.1. Molar volume

The inverse relationship between bulk modulus and molar volume V was first

formulated by Bridgman (1923). This relationship was used for predicting bulk moduli of

mantle minerals where the data were not available (e.g., Hazen and Finger, 1979). The

basic expression is KV ¼ constant. However, anomalous compression behaviours known

through recent studies in (Mg,Fe)2SiO4 spinels and Ca(Mg,Fe)Si2O6 clinopyroxenes do

not conform to the above relationship (Hazen 1993; Zhang et al., 1997). They found that

Mg-rich members with smaller molar volume were more compressible at high pressures

than their Fe-rich counterparts of larger molar volume.

To explain this discrepancy, a comprehensive study comprising the determination

of the crystal structure type, valence state of cations, electronic configuration, polyhedral

coordination number as well as the cation substitution becomes a necessity.

5.6.2. Shear modulus: mantle perovskite

Compared with the determination of bulk modulus and the EOS at high pressure,

the shear modulus, G; is more difficult to determine. In geophysics, shear modulus is
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an important quantity as it is related to the longitudinal ðPÞ and shear ðSÞ velocities as

(see also equation (5-20)):

Vp ¼ ½ðKs þ 4=3GÞ=r�1=2; Vs ¼ ðG=rÞ1=2 ð5-32Þ

Using a PIB model (Cohen, 1987), a value of 190 GPa for the G of MgSiO3

perovskite was determined under ambient conditions. Brillouin scattering measurements

(Yeganeh-Haeri et al., 1989) showed this value as 184.2(^4.0) GPa (both Voigt–Reuss–

Hill bounds).

The single-crystal elastic moduli (in GPa) for MgSiO3 perovskite at zero pressure

using the theoretical PIB model and the experimental Brillouin scattering spectroscopy

indicate that the value of G under room T ; P equals that of the lower mantle at 1,000-km

depth (Dziewonski and Anderson, 1981). If the lower mantle is perovskite-rich, the

pressure and temperature effects offset each other at that depth (40 GPa and 1,900–

2,300 K). At 1,071-km depth, pressure G equals 255 GPa (at 300 K). These indicate that

dG=dT < 0:04 GPa/K is consistent with geophysical data when a perovskite-rich lower

mantle is assumed. The measured values of dG=dT for 15 silicates fall in the range of

20.08 to 20.014 GPa/K (Sumino and Anderson, 1989).

5.7. Magnetic features

5.7.1. Ferromagnetism

In ferromagnets, interactions between the dipoles favour a state in which the dipoles

align along the same direction and long-range magnetic ordering occurs at Tc: The

spontaneous magnetization is zero above Tc; where thermal motion overwhelms any

magnetic alignment.

In other words, ferromagnetism arises from a spontaneous alignment of the atomic

magnetic dipoles (spins), driven by magnetic interactions between the atoms. But magnets

of certain crystal structure show an inability to attain magnetic order, solely by virtue of the

geometrical arrangement of the magnetic atoms. These are geometrically frustrated. The

high-temperature supercounductivity is believed by some to be due to a kind of frustrated

magnetic state (Anderson, 1986).

Ferromagnetism is generally considered to be geometrically unfrustrated. For

discussion on ferromagnetism phase transition, see Section “Ferromagnetic phase

transition” of this chapter.

5.7.1.1. Curie temperature
The pressure dependence of Tc is a strong function of the doping level and is

reminescent of the effects observed in high-temperature superconductors (Neumeier and

Zimmermann, 1994), where the total charge-carrier concentration n increases with

pressure. Under pressure, the value of nðPÞ could be non-zero and enhance the

ferromagnetic double-exchange coupling.
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The dTc=dP values of some ferromagnetic materials are shown in Table 5.5.

Large values of dTc=dP suggest that strong magneto-volume effects will be observed in

these materials. The largest dTN=dP and dTc=dP values occur for the highest electrical

resistivity.

The ferromagnetic double-exchange interaction is presumably more strongly

pressure dependent than direct or super-exchange (assumed to be responsible for the

anti-ferromagnetism) in similar compounds.

5.7.2. Ferrimagnetism

In a ferrimagnet (e.g., magnetite), there are two non-compensating sub-lattices of

local dipoles called MA and MB; with MA – MB: The interactions between MA and MB

favour their anti-parallel orientation. Again, a long-range ordering occurs at Tc; with the

dipoles MA aligned in one direction and the dipoles MB oriented in the opposite direction.

At any temperature below Tc; the spontaneous magnetization is the algebraic sum

of the contributions arising from each of the two sub-lattices. In most cases, at any

particular temperature, the contribution of one of the sub-lattices is larger in value so that

the resulting spontaneous magnetization increases steadily as T is lowered.

In a few cases, the two contributions cancel out at a temperature called the

compensation temperature, Tcomp: Between Tc and Tcomp; the contribution of one of the

sub-lattices dominates. Below Tcomp; the contribution of the other sub-lattices dominates.

The spontaneous magnetization is first positive, then zero and finally negative as the

sample cools down. This behaviour, predicted by Louis Neel in 1948, is observed in metal

oxides and also in some molecule-based magnets containing organic molecules

(Mathonière et al., 1996).

5.7.3. Spin states of iron

In accordance with Hund’s rule, the ground-state electronic configuration is the one

with maximum spin multiplicity, i.e., S ¼ 2: The state with maximum S is stabilized

through exchange energy. This state with maximum spin will have the most parallel

electrons and, hence, the greatest exchange stabilization energy.

TABLE 5.5

dTC=dP and dTN=dP some ferromagnetic materials

Compound dTC=dP (K/GPa) Source

Sr Ru O3 perovskite < 25.7 Neumeier et al. (1994)

Ni þ32 White and Geballe (1979)

Fe ¼ 0 White and Geballe (1979)

Co ¼ 0 White and Geballe (1979)

SC3ln þ1.7 Grew et al. (1989)

YFe5O12 þ12.5 Kafalas et al. (1971)

dTN=dP (K/GPa)

Ca12x SrxMnO3 ,þ4 Neumeier et al. (1994)
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In the case of Fe2þ-bearing compounds, such as FeO, FeS2 and FeS, the electronic

configuration is [Ar] 3d6 and the levels consist of two sets of orbitals t2g and eg; which are

split according to the octahedral ligand field 10 Dq (or D0).

In the HS state, the electrons occupy the orbitals according to Hund’s rule and

electrons in 3d6 are spread over as t3
2g"e

2
g"t

1
2g": In the LS state, the electronic configuration

becomes t3
2g"t

3
2g# and the total 3d magnetic moment is zero (in XES, the Kb

0 satellite

emission line vanishes).

In the case of an Fe3þ-bearing compound, such as Fe2O3, the electronic

configuration is [Ar] 3d5 and the configuration of the 3d orbitals is t3
2g"e

2
g" in the HS and

t3
2g" t2

2g# in the LS state to a first approximation.

The exact electronic configuration and magnitude of the magnetic moment would

depend on the nature of the ligand field, crystal structure and 3d band structure. However, a

finite moment is expected in the case of lower-spin Fe2O3 (in XES emission spectrum,

a weak Kb
0 satellite shows up).

Because the high-spin phase should be the high-entropy phase, the increasing

temperature should promote the high-spin magnetic phase rather than the low-spin non-

magnetic phase. Increasing temperature leads to disordering of the local moments.

5.7.3.1. Electronic/magnetic ordering: examples

Pressure-induced electronic and magnetic order–disorder effects are known in

condensed matter research (Kelso and Banerjee, 1995). To site a few examples: Verwey

transition in Fe3O4, spinels (Kaakol et al., 1992), electron delocalization (insulator-to-

metal transition in VO2; Pintchovski et al., 1978) and spin unpairing as in Co3O4 and

CaFeO3 (Mocala et al., 1992). At high pressure when DV becomes positive, metallization

and spin pairing may occur.

5.7.3.2. Magnetic collapse: oxides and perovskites

As pressure and temperature are varied, a number of transitions are expected. These

may occur together in several groups, such as Mott transition, transitions between band

states and localized states, high-spin–low-spin transitions, structural-phase transitions and

magnetic-ordering transitions.

Magnetic collapse can occur if the crystal-field splitting becomes larger than the

exchange splitting. In such a case, the occupancy of state changes and the magnetic

moments collapse. The magnetic collapse occurs by band broadening with pressure, with

very little change in the crystal field. Indeed, the crystal-field t2g –eg splitting is seen to

remain the same at all pressures. A uniform decrease in effective DOS with pressure rather

than a change in CF splitting (which is low) gives rise to magnetic collapse.

The magnetic properties at very high pressure of FeO, MnO, CoO, NiO and

FeSiO3
(pvs) have been investigated by Cohen et al. (1997) using the first-principles linear

muffin-tin orbital (LMTO) and linearized augmented plane wave (LAPW) electronic

structure methods within the GGA. They computed the anti-ferromagnetic moments

for cubic rock salt (B1)-structured FeO, MnO, CoO and NiO and found that all

four compounds exhibit magnetic collapse. For FeO, magnetic collapse occurs at relatively
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high pressures, whereas for CaO the transition pressure is relatively low (see also Section

12.2.1).

(Mg,Fe)SiO3 perovskite containing up to 15% Fe is considered to be the most

common mineral in the Earth. In this phase, Fe is in a high-spin state in the A-site and a

low-spin state in the B-site at geophysically relevant pressures (135 GPa). In the A-site,

magnetic collapse does not occur until 1 TPa whereas, in the B-site, the magnetic

moment decreases smoothly from high spin at low pressures to low spin at high

pressures. Again, the B-site is much smaller than the A-site. The B-site band-width

becomes much larger when Fe is in the B-site; this leads to different magnetic behaviour.

When the magnetic collapse occurs, it is governed by the band-width rather than by the

crystal field.

Transition-metal sulphides, having a greater overlap of larger sulphur anions, will

show larger band-widths and, consequently, lower pressure transitions. For example, in the

FeS2–MnS2 system, Fe2þ is in a low-spin state, whereas dilute Fe2þ in MnS2 iron is in a

high-spin state because of the larger molar volume of MnS2 (compared with FeS2). Under

moderate compression (12 GPa), the Fe2þ ions undergo magnetic collapse to the low-spin

state. Substitution in a smaller site will also cause a compression effect on Fe2þ to induce

magnetic collapse at lower pressures. This occurs in Mg(Fe)O, magnesiowüstite, in

which iron undergoes magnetic collapse at lower pressures than for FeO. This is

because Mg2þ ion is smaller in size than Fe2þ ion. Also, Fe2þ ion in Mg-wüstite will

collapse at lower pressures than Fe2þ ion dissolved in Fe liquid. The magnetic collapse of

Fe2þ iron in Mg-wüstite may be responsible for the anomalies observed in the D00 zone

above the core.

Magnetic collapse in Co2þ would make it more siderophile. This explains the

relative depletions of Ni and Co in the silicate mantle. Thus, ultra-high-pressure

experiments help one to a better understanding of the partitioning of elements in the lower

mantle.

5.7.3.3. Magnetism in phase stability

Magnetism can affect phase stability, lattice distortions, elasticity, EOS, and

vibration frequencies.

Magnetism arises from electron spin, which is a vector quantity, behaving like

quantum angular momentum. The orbital angular momentum of electron leads to orbital

magnetic moments. The orbital moments become important in f-orbital electrons, such as

present in rare Earths and lanthanides. When the localized f-electrons interact with

delocalized band-like states interesting phase transitions occur with pressure, such as with

Ce. d-State electrons get more delocalized than f-state electrons, which are more localized.

But localization is also important.

The antisymmetric property of the wave function leads to the Pauli exclusion

principle, without which the electrons would fall into the nucleus and no atom will exist!

The opposite spin property allows a maximum of two electrons to exist in an orbital. Since

electron is indistinguishable one can consider the quantum states to be paired rather than

the electrons themselves. In order to lower the total potential energy the electrons are
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required to have the same spin. The lowering of potential energy by lining up the spins is to

raise the system’s kinetic energy. The electronic potential energy favours magnetic while

the electronic kinetic energy favours non-magnetic electronic structure.

Under pressure electrons are pushed close together, the bands become wider and the

material becomes non-magnetic. The total energy change between magnetic and non-

magnetic system is known as exchange energy.

From low temperature as the temperature is raised the magnetic moment directions

on each atom will fluctuate and at critical temperature, Tc, in ferromagnetic the moments

will disorder.

In antiferromagnets the magnetic moments lie in opposite directions in alternate

sites. Under pressure the kinetic energy is lowered. Some ferromagnets under pressure

become antiferromagnet, e.g., fcc iron.

5.7.3.4. Magnetic frustration
At the lowest free energy state some have non-collinear spins, and it becomes

impossible to transform lattice with perfect antiferromagnetic pattern, (i.e., neighbours

with opposite pointing spin), e.g., fcc and hcp structures. Such properties are responsible

for anti-Invar effect (high thermal expansivity) as in fcc iron.

5.8. Polyhedral changes

It is known that a closed 3D figure made of rigid triangles can be squeezed or

stretched into a new shape without distorting the faces. The concept of flexible polyhedra

retaining their volume constant has destroyed the belief that a given set of edge lengths

should yield a finite number of shapes.

The formula of Heron, the Greek mathematician (of Alexandria) says that area, x; of

a triangle with side lengths ða; b; cÞ must solve the polynomial:

16x2 þ a4 þ b4 þ c4 2 2a2b2 2 2a2c2 2 2b2c2 ¼ 0:

The volume of a tetrahedron has to a satisfy similar but more complicated

polynomial. For an octahedron, the polynomial involves 16th powers of the volume.

The volume of any polyhedron might also solve some version of Heron’s polynomial.

The volume of a polyhedron with fixed side lengths could only change by

jumping from one solution of the polynomial to another but if the polyhedron

change is gradual, the volume cannot change suddenly; it has to remain constant. A

flexible four-sided figure, for example, can change its area without changing the side

lengths.

The compression of the individual octahedral configuration is strongly dependent

upon both the geometry of the polyhedron itself and the types of, and the connectivity to, the

neighbouring polyhedra. The dominant mechanism of compression is usually one

of polyhedral rotation and the change in interpolyhedra bond angles. Conversion of

corner-shared MO6 octahedra to various structural patterns is shown in Fig. 5.4.
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The bonding geometry controls the pressure-induced changes of the material’s

physical characters. Generally, with pressure, the bond-length distortion decreases as the

anions tend to approximate close packing.

The degree of polyhedral distortion at high pressure can be characterized with

distortion parameters defined (Renner and Lemann, 1986) as

Bond-length distortions (BLD):

BLDð%Þ ¼ 100

n

Xn

i¼1

ldi 2 �dl
�d

ð5-33Þ

Edge length distortion (ELD):

ELDð%Þ ¼ 100

n

Xn

i¼1

ðxi 2 �xÞ
�x

ð5-34Þ

Angular distortions (AD):

ADð%Þ ¼ 100

N

XN

j

lajl ð5-35Þ

aj ¼
Xm

i¼1

ai 2 aideal

aideal

ð5-36Þ

where di and xi are the bond length and edge length, respectively, �d and �x are the average

bond length and edge length in a polyhedron, a is the polyhedral angle and aideal is the

polyhedral angle of a regular polyhedron.

The bulk modulus of a mineral, K; represents the pressure dependence of its molar

volume, V; as

K ¼ 2VðdP=dVÞ ¼ 1=b;

Figure 5.4. Transformation of corner-shared (MO6) octahedra (a) to edge-shared octahedra (b) to corner and

edge-shared octahedra (c) to face-shared octahedra (d). The structure consists of an infinite array of corner-shared

octahedra (a), and infinite strings of edge-shared octahedra (c).
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where b is the volume compressibility of the crystal. At elevated pressure, K generally

increases.

Usually, under increasing pressure, SiO4 tetrahedra become more regular, as do the

MgO8 polyhedra whereas AlO6 octahedra become more distorted. MO6 and SiO4 polyhedra

dictate the compressibility of the structure hosting these. A high-valence state of cations in

octahedra would lead to a more incompressible structure. The compressibility of Si–O

bonding is of great interest because of the transition between 4- and 6-fold coordinated

silicon in the Earth’s transition zone and lower mantle. The constituent polyhedra of mineral

phases in the upper and lower mantle are shown in Fig. 5.5 (see caption). The high

incompressibility of Si–O bonding makes it difficult to determine the bulk modulus of SiO4

tetrahedra occurring in the mantle minerals. However, experiments at extended pressures by

different workers have demonstrated the Si–O bonding to show a significant compressibility

(although over a broad range) (Kudoh and Takeuchi, 1985, Hazen and Finger, 1989; Hugh-

Jones and Angel, 1994; Zhang et al., 1997, Zhang et al., 1998).

The crystal volume for an experiment above 20 GPa is more than five times smaller

than for an experiment at pressures lower than 10 GPa.

The macroscopic bulk modulus is due to polyhedral compression and tilting of

polyhedra about shared-corner linkages. The bulk modulus is related to pressures as

Kpkdl
3=S2zcza:

where Kp is the bulk modulus of the polyhedron, kdl is the mean distance between the

cation and anion, zc and za are the charges on the cation and anion, respectively, and S is a

scaling factor equal to 0.50 for oxides and silicates.

Figure 5.5. Major constituent polyhedra of the mantle mineral phases. In the upper mantle, silicon is coordinated

to four oxygens and metal (M) atoms (Mg, Fe, Ca,…) to six oxygens. In the lower mantle, the oxygen coordination

of silicon ranges from 4 to 6, and that of metal atoms from 6 to 12 (after Madon, 1992).
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Change in the volume of coordination polyhedra is related to the bond parameters,

such as the M–O distance ðdÞ; coordination number ðnÞ; cation radius ðrÞ; cation and anion

charges ðZc and ZaÞ and ionization ðS2Þ: The volume changes in the direction of a; b and g

in anistropic crystals can be represented as

av ¼ 1=v
dV

dT


 �
< 120

n

s2zczz


 �
£ 1026 8C21 ð5-37Þ

bv ¼ 21=v
dV

dP


 �
< 0:133

d3

s2zcza


 �
£ 1026 bar21 ð5-38Þ

gv ¼ 1=v
dV

dX


 �
<

3ðr2 2 r1Þ
d

ð5-39Þ

where X ¼ atomic fraction of large cation.

The compressibility in isothermal conditions is defined as

bT ¼ 2
1

V

dV

dP


 �
T

:

An increase in the coordination number (by transition, etc.) will increase the

polyhedral compressibility. Compression of cation polyhedra in oxides is a fundamental

property of the type of polyhedron, essentially independent of the structure type.

The oxides and silicate minerals suffer structural changes. The changes are

controlled by the following the observed rules:

(A) With pressure, the lattice volume change is negative because crystal compresses

mostly along the axes.

(B) The metal–oxygen bond distance, d; shows an average compressibility, b: In the case

of a crystalline phase:

b ¼ ð21=dÞdd=dP < 0:044ðd3=S2ZcZaÞ £ 106 bar21ðsee Fig: 5:6ðaÞÞ:

(C) The polyhedral compressibilities (and change in O – cation – O angles)

correspond to the total volume compression. The relationship between the bulk

modulus and volume for a variety of marerials is shown in Fig. 5.6(a) (Hazen and

Finger, 1979).

5.8.1. Elasticity of MgO6 and SiO6 octahedra: MgSiO3 ilmenite

The calculated Si–O, Mg–O and O–O bond lengths and the polyhedral volume

decrease continuously with increasing pressure.

The polyhedral bulk moduli obtained from fits to third-order Birch–Murnaghan

EOS are
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for SiO6 octahedron:

K ¼ 338 GPA ðwhen K 0
T0 ¼ 5:05Þ

and, for MgO6 octahedron:

K ¼ 172 GPA ðwhen K 0
T0 ¼ 3:96Þ:

Thus, MgO6 octahedra are ,2 times more compressible than SiO6 octahedra.

The degree of distortion (QE and s 2) in both MgO6 and SiO6 octahedra decreases

under compression, but the distortion of the former decreases more rapidly with pressure

(Fig. 5.6(b)).

The ilmenite structure consists of alternating MgO6 and SiO6 octahedral layers

normal to the c-axis. The high elastic anisotropy of ilmenite is connected to the large

contrast in the compressibility of the two types of octahedra, namely MgO6 and SiO6.

Compression along the c-axis is jointly determined by the more compressible MgO6 and

less compressible SiO6 octahedra, whereas compression along the a-axis is only controlled

by the less compressible SiO6 octahedra (Karki et al., 2000).

5.8.2. Anisotropic deformation: decompression

Cubic crystals deform isotropically while the deformation of anisotropic crystal is

determined by the anisotropy of bond strength and shearing. Negative linear thermal

expansion is common in monoclinic and triclinic crystals.

Highly ansiotropic deformation in oblique-angle crystals, such as felspars,

amphiboles, pyroxenes and micas, cause decompression of rocks, increase in fluid

permeability and ore deposition through metamorphism. The anisotropy of felspars and

Figure 5.6(a). The bulk modulus-volume relationship for polyhedra a variety of materials (Hazen and Finger,

1979, q 1998 Mineralogical Society of America).
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quartz ða! bÞ transitions causes volume change by 0.6% (at 5738C), and causes

decompression of host rocks such as granite, etc. Similarly, highly anisotropic thermal

expansion of calcite is responsible for the thermal decompression of marbles.

5.8.3. Radius ratio and coordination changes

The ratio of the ionic radii of cation ðRcÞ and anion ðRaÞ determines the

coordination number of the cation. When this ratio ðRc=RaÞ ranges between 0.414 and

0.732, octahedral coordination occurs. In the case of tetrahedral (4-fold) coordination, this

ratio is less than 0.414 while, for cubic (8-fold) and dodecahedral (12-fold) coordination,

this ratio falls below 0.732.

In the high-pressure (denser) polymorphs, the coordination number of Si and Mg

increases (especially in perovskite structure). This is in consequence of the increase in

radius ratio for most cations, which show less compressibility compared with the highly

polarizable oxygen anions. Divalent cations (except low-spin ones) are more susceptible to

a pressure-induced increase in coordination number than are the trivalent cations. Thus, at

high pressure, divalent high-spin cations, e.g., Fe2þ, Mn2þ, Co2þ and Cr2þ, acquire a

coordination number greater than six. These cations occur in the A-sites of perovskites in

the lower mantle; whereas higher-valent states, such as Ti4þ, Ti3þ, V3þ, Cr3þ and Fe3þ,

remain in octahedral sites throughout the mantle and stabilize the B-sites of perovskite and

also the structure of magnesiowüstite.

In the Earth’s deep interior as pressure increases the coordination number, the

cation–oxygen distance increases. Thus, high-pressure phases show greater compressi-

bility than their low-pressure polymorphs. The volume reduction with pressure causing

discontinuous structural changes is countered by the increase in cation coordination.

Transformations such as those of MgSiO3 from pyroxene to garnet to perovskite result in

large density increases (from increased atom-packing efficiency).

Figure 5.6(b). Pressure variation of distortion parameters (a) quadratic elongation (QE) and angle variance (s2)

for MgO6 and SiO6 octahedra.
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5.8.4. Five-fold coordination: silicon and titanium

Five-fold coordination of silicon by oxygen (vSi) has been predicted by theoretical

studies of the effects P and T on silicate melts and glasses (Jin et al., 1994; Badro et al.,

1996) and is inferred experimentally by 29Si NMR and vibrational spectroscopy in alkali

silicate liquid and glasses (e.g., McMillan et al. 1994; Farber et al., 1996). vSi has been

proposed as playing a role in the dissolution of silicates (e.g., Xiao and Lasaga, 1996).

Although vSi is suspected in high-pressure silicates, no crystalline phase of silica

containing vSi have yet been observed. It may form part of the network of high-pressure

amorphous phases and be hypothetized in high-temperature SiO2-rich melts or glasses.

The first-principles electronic structure method and inter-atomic potential studies

show that vSi species are gradually replaced by ivSi and viSi with increasing pressure (e.g.,

Kubicki et al., 1993). Recent molecular-dynamic simulations on a-quartz under non-

hydrostatic stress found evidence for a crystalline phase of SiO2 composed entirely of SiO5

groups (Badro et al., 1996). The detail of the SiO5 polyhedron is shown in Fig. 5.7. Badro

et al. (1997) performed theoretical calculations in silica as a function of non-hydrostatic

stress. Molecular-dynamics calculations reveal a crystalline-to-crystalline transiton from

a-quartz to a vSi- bearing phase at high P in the presence of deviatoric stress. The structure

of the phase possesses P3221 space-group symmetry. First-principles calculations within

the local-density approximation, as well as molecular dynamics and energy minimization

with inter-atomic potentials, show this phase to be mechanically and energetically stable

with respect to quartz at high pressure.

Upon decompression, the vSi phase reverts to a-quartz through an intermediate

four-coordinated phase and an unusual isosymmetrical phase transformation. The change

in Si–O bond length and Si–O–Si angle with molar volume on decompression of the

penta phase is shown in Fig. 5.8. The calculated powder X-ray diffraction pattern of SiO2

penta for a relaxed structure (P ¼ 16 GPa) is shown in Fig. 5.9. The results suggest the

Figure 5.7. Detail of the SiO5 polyhedron showing the position of the atoms and bond lengths calculated by LDA

(P ¼ 16 GPa) (from Badro et al., 1997, q 1997 American Physical Society).
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importance of the application of non-hydrostatic stress conditions in the design and

synthesis of novel materials (Badro et al., 1997).

Five-coordinated silicon is presumed to be present in an intermediate complex

during dissociation and polymerization processes of silicates (e.g., Lasaga and

Gibbs, 1990) and also during viscous flow and diffusion processes in silicate melts

(Zue et al., 1991).

Figure 5.8. Structural variations in the penta phase as a function of volume during decompression Si–O–Si bond

angles (top) and bond distances (bottom) (Badro et al., 1997, q 1997 American Physical Society).
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Kanazaki et al. (1991) and Kudho and Kanazaki. (1998) synthesized a-CaSi2O5

phase at high P; T (12 GPa/1,5008C) and found the existence of a square-pyramid 5-fold

coordination of silicon in the structure.(see Figs. 5.10 and 5.11).

Assuming 1.4 Å as the ionic radius of oxygen, the ionic radius of [5]Si is

obtained as 0.33, which is intermediate between 0.26 Å for [4]Si and 0.40 Å for [6]Si

(Shannon- and Prewitt, 1969). Penta-coordinated silicon has been reported in organic

compounds. In all these structures, the [SiA5] groups are more or less distorted trigonal

bipyramids.

Figure 5.9. Calculated powder X-ray diffraction patter of the SiO2 penta for the relaxed structure (P ¼ 16 GPa)

(from Badro et al., 1997, q 1997 American Physical Society).

Figure 5.10. Square-pyramid coordination environment about Si3. Numbers indicate bond valences. The sixth

Si–O distance is indicated by broken line (Kudoh and Kanzaki, 1998, q 1998 Springer-Verlag).
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The square pyramid 5-fold coordination of Ti by O has been reported for

Ba2TiSi2O8 (Moore and Louisnathan, 1967) and for Na2TiSiO5 (Nyman and O’Keeffe,

1978). In the case of the TiO5 square pyramid, the four longer Ti–O bonds are tetragonally

placed and the fifth oxygen atom makes a shorter Ti–O bond, forming a highly compressed

square pyramid.

5.8.5. Thermal expansivity and deformation equivalence (a=b)

The mean linear coefficient of thermal expansion, �a ð �a ¼ av=3Þ; where av is the

coefficient of volumetric expansion of a coordination polyhedron formed by essentially

ionic bonds, has simple reversible relations to Pauling bond strength (cf. equation (5-37)):

�a1000 ¼ 1

a

dd

dT
< 4:0ð4Þ n

S2ZcZa


 �
£ 1026 8C21 ð5-40Þ

where d is the cation–anion separation, n is the coordination number of the cation, Zc

and Za are cation and anion charges, respectively, and S2 is the ionic-bond coefficient,

which is equal to ,0.5 for oxygen compounds, as stated earlier. Thus, all types of

polyhedra with a definite cation and anion have the same parameter a; which can be

used for predicting the effect of T on the polyhedra and thus does not depend on

structural bonds in the polyhedra. Furthermore, all coordination polyhedra with similar

values of Pauling bond strength have a similar coefficient a (see Fig. 5.12).

For example, in octrahedra with divalent Mg, Co, Fe, Cd, Mn, Ca, Ba and Sr, the

thermal expansion ða1;000Þ equals 14 ^ 1 £ 1026 8C21.

Molar volume at 1 bar is expressed as function of T:

Vð1;TÞ ¼ V0
1;Tr exp

ðT

Tr
aðTÞdT


 �
ð5-41Þ

Figure 5.11. (a) [5]Si coordinated by five oxygens atoms with Si3–O6 being vertical. (b) As above with Si3–O6

being horizontal (Kudoh and Kanzaki, 1998, q 1998 Springer-Verlag).
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where V0
1;Tr is molar volume at 1 bar, Tr is the transition temperature and aðTÞ is the

thermal expansion, depending on temperature as

aðTÞ ¼ a0 þ a1T þ a2T2 þ a3T3: ð5-42Þ

The thermal expansivity at ambient pressure, sT0; can be assumed as

aT0 ¼ a þ bT:

All crystalline substances can be represented in P–T –X space by surfaces of a

constant molar volume (isochroic surfaces). For many substances, the isochroic surfaces

coincide with isostructural surfaces.

The deformation equivalence is measured as the ratio of thermal expansivity, a;
with compressibility b: The minerals in a single zone have a similar deformation

equivalence, a=b: This a=b value increases with pressure in depth. As a consequence of a

decrease in the temperature gradient, the expansion slows down and the proportion

of compression increases. The a=b relation obtained for a polyhedron (Hazen and

Finger, 1982) is

a=b < 90 n=d3 bar=8C:

Figure 5.12. The relationship between the mean linear polyhedral thermal expansion vs the pauling bond strength.
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Evidently, the higher coordination numbers ðnÞ of the atoms in deep-seated phases

determine their greater density and deformation equivalence, a=b: All Mg, Fe2þ, Al and

Fe3þ octahedra have a=b < 65 bar/8C. Many silicate minerals reveal a–b inverse

relationships. Even rutile, having a more covalent bonding, demonstrates an inverse

relationship.

In subducting slabs, the rocks in depth zones under higher temperature and pressure

expand and compress simultaneously. The average a=b increases with depth of the zone

ðhÞ; rock density ðrÞ; P-wave velocities within the zone ðVPÞ and the mean symmetry of the

minerals in the zone.

Molar volume as a function of pressure and temperature can be calculated using the

Murnaghan equation:

VðP; TÞ ¼ Vð1; TÞ 1 þ K 0
PP

KT


 �21=K 0
P

ð5-43Þ

where KT is isothermal bulk modulus expressed as

KT ¼ 1=ðb0 þ b1T þ b2T2 þ b3T3Þ

and K 0
P is the pressure derivative of the bulk modulus, which, in some cases, has a

temperature dependence

K 0
P ¼ K 0

P Tr þ K 0
PTðT 2 TrÞ lnðT=TrÞ

K 0
P Tr is the pressure derivative of the bulk modulus at transition temperature, ðTrÞ and K 0

PT

is its temperature derivative.

The specific temperature dependence of the bulk modulus of oxides and silicates is

available from Saxena et al. (1993). It is advisable to check that employment of the

Murnaghan equation and the Birch–Murnaghan equation gives close results in the studied

P; T range.

5.8.6. Volume compressibility: negative

Under hydrostatic pressure ðPÞ; most materials contract in all directions. Therefore,

the volume compressibility ð2dV=V dPÞ; area compressibility ð2dA=A dPÞ and linear

compressibilities ð2dL=L dPÞ are all positive. Materials are thermodynamically forbidden

to have negative volume compressibilities but some crystals having negative linear

compressibilities have been known; e.g., lanthanum niobate, cesium dihydrogen phosphate

(Prawer et al., 1985) and some others.

Materials having negative area compressibilities might be used as electrode

clamps to provide a sensitivity increase by an order of magnitude for ferroelectric

pressure sensors. However, materials with negative compressibilities are rare.

The pressure-induced expansion of the negative-area-compressibility material forces a

ferroelectric sheet to increase in area when pressure is applied. (Note: negative

compressibility may be relevant in muscular hydrostats, such as those found in worms.)
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5.8.6.1. Relative compressibilities
Relative compressibility can be measured quite precisely from relative volumes of

crystals at several pressures:

b1=b2 < ½ðVP=V0Þ1 2 1�=½ðVP=V0Þ2 1�; ð5-44Þ

where b1 and b2 are compressibilities of two different crystals,1 and 2, and V0 and VP are

their unit-cell volumes measured at ambient pressure and high pressure.

Small compressibility differences in compositionally similar sites of wüstites

(Hazen, 1981), felspars (Angel et al., 1988), pyroxenes (McCormick et al., 1989),

wadsleyites (Hazen et al., 1990) and silicate spinels (Hazen, 1993) have been

documented.

5.8.7. Thermodynamic parameters and EOS

One of the most important thermodynamic parameters for high P–T calculations is

the unit-cell volume of a mineral. Its variation with P and T is described by its EOS with

three components: (1) compressibility at ambient temperature, (2) thermal expansivity at

ambient pressure and (3) cross-derivative terms describing the effect of pressure on

thermal expansivity, equivalent to the effect of temperature on compressibility. For

accurate thermodynamic calculations, each component should be measured at relevant

P–T conditions. EOS measurements are useful for constraining lower P–T metamorphic

reactions.

The EOS presents the thermodynamic relations between V ; T ; P and other external

fields. The EOS (when b is constant) can be written as a Taylor series or polynomial

expansion of P in terms of V : Birch–Murnaghan EOS is capable of treating compression

of up to factors of ,2 (i.e., V=V0 ¼ 0:5). For hydrogen and helium V=V0 equals 0.15.

EOS data play a central role in efforts to describe the mineralogical structure and

convective dynamics of the Earth’s deep interior. Experiments defining the molar volume

as a function of pressure clarify the nature and character of phase transitions that may occur

in the crust and mantle and, furthermore, provide valuable constraints on models of

bonding in minerals.

5.8.7.1. P–V –T data and EOS
An EOS reflects the underlying interaction potential among the ions and electrons

that make up a crystal. The P–V –T EOS plays a central role in study of the Earth’s deep

interior. Using the EOS, one can calculate the densities and bulk-wave velocities of

candidate materials at lower-mantle P; T conditions. By fitting the densities and wave

velocities to seismic observations, one can test models for the bulk chemistry of the lower

mantle (e.g., Bina, 1995; Jackson, 1998). In addition, the EOS enables us to determine the

depth dependence of important thermoelastic parameters, such as the thermal expansivity

and temperature sensitivity of the bulk modulus. The latter is necessary for comparing

seismic-bulk velocity profiles with laboratory data.
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Recently, new methods using a diamond cell combined with laser or resistance

heating have been used to obtain P–V –T EOS data directly at lower-mantle P–T

conditions (e.g., Fiquet et al., 1998; Shim et al., 1998; Saxena et al., 1999).

Under pressure, the changes in volume V is expressed in terms of the bulk

modulus, K:

Vðdp=dvÞT ¼ 2KT:

An expansion of the bulk modulus in terms of pressure is

KðPÞ ¼ K0 þ K 0
0P þ 1

2
K 0

0P2 þ · · ·

where K0 is the value for P ¼ 0; K 0
0 is the first-pressure derivative at P ¼ 0 and so on.

Using only the first two terms and integrating the Murnaghan equation (for a

crystal) empirically becomes

P ¼ K0=K 0
0½ðV0=VÞK0

0 2 1� ¼ K0=K 0
0½ðd0=dÞ3K0

0 2 1� ð5-45Þ
where d is the lattice parameter.

The values of K0 and K 0
0 are obtained from precise measurements of elastic

constants; and X-ray data for the dðPÞ fit of this equation (within the empirical error for

P , 0:2K0). A typical value of K is 75 GPa. To describe dðPÞ at higher pressure, higher-

order equations can be used but experimental data of K at high pressures are often not

readily available.

5.8.7.2. Birch EOS
The Birch–Murnaghan EOS (Birch, 1947) has often been used to fit isothermal

compressional data. When the cell volume data do not follow any isothermal experimental

path, the Birch–Murnaghan EOS for diverse temperatures can be fitted to the P–V –T

data. It is important to indicate that any VðP; TÞ data point should be reached by taking a

realistic thermodynamic path. A standard way to fulfil the thermodynamic necessity is to

heat the ambient volume V0 to a temperature T and then compress the expanded volume

Vð0;TÞ along the isothermal to reach the VðP; TÞ: The modified Birch–Murnaghan

equation is thus written as

P ¼ 3KTf ð1 þ 2f Þ5=2½1 2 3=2ð4 2 K 0Þf þ · · ·� ð5-46Þ
where

KT ¼ KT0 þ �KðT 2 300Þ; K 0 ¼ dK=dP; �K ¼ dK=dT

f ¼ 1=2½ðVT=VPTÞ2=3 2 1�; VT ¼ V0 exp

ð
avð0; TÞdT


 �

where V0 is the cell volume at ambient conditions, VT at high T and VPT at high P–T

conditions and thermal expansion at zero pressure is av0 ¼ avð0; TÞ ¼ a þ bT 2 c=T2

(T in kelvin) and f is called the Eulerian strain (see equation (2-9)).

In thermal expansion, the C=T2 term and the high-order derivatives of bulk

modulus K 00; �K and d2K=dPdT are generally ignored. The equation is a modified
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isothermal Birch–Murnaghan EOS by replacement of K0 with KT and substituting V0=VP

with VT=VPT so that temperature effects are incorporated.

Generally, four iterative steps, where each step has different constraints on starting

parameters, can be taken to achieve the final fitting results:

Step 1: fix av0 and fit KT0; K 0; �K

Step 2: fix KT0; K 0 and fit av0; �K

Step 3: fit av0; KT0; K 0; �K simultaneously

Step 4: Combine all data and fit av0; KT0; K 0; �K simultaneously.

The Birch equation assumes that the underlying potential can be represented as a

series in ð1=r2nÞ: The commonly used third-order Birch equation (with parameters V0; KT0

and KT0
0 ) includes n ¼ 1; 2 and 3.

However, there is no fundamental reason to expect ð1=r2nÞ to represent inter-atomic

interactions well, so it is not surprising that the Birch equation is not perfect.

The Vinet and Holzapfel equations converge smoothly to a constant at large

volumes, being consistent with physically based potentials.

5.8.7.3. Equations of state: density ratio
The Birch–Murnaghan EOS is widely used amongst geoscientists. The two

important pressure–density relationships used are as follows.

The first-order Birch–Murnaghan EOS for many solids is approximately

P ¼ 3=2K0½ðV0=VpÞ7=3 2 ðV0=VpÞ5=3� ð5-47Þ

where K0 is the bulk modulus at zero pressure (i.e., at 1 bar, ø 1024 GPa) and V0 and Vp

are volumes at room and elevated pressure, respectively. Considering ðV0=VpÞ equals

ðr=r0Þ; the following relations hold:

Birch–Murnaghan (third order):

P ¼ ð3=2ÞK0½ðr=r0Þ7=3 2 ðr=r0Þ5=3�{1 þ 3=4ðK 0
0 2 4Þ½ðr=r0Þ2=3 2 1�} ð5-48Þ

Birch–Murnaghan ( fourth order):

P ¼ 3=2K0½ðr=r0Þ7=3 2 ðr=r0Þ5=3�{1 þ 3=4ðK 0
0 2 4Þ½ðr=r0Þ2=3 2 1�

þ 3=4½K0K 00
0 þ ðK 0

0 2 4ÞðK0 2 3Þ þ 35=9�½ðr=r0Þ2=3 2 1�2}

The EOS can be expressed as a function of density via C ¼ r=r0:
The second-order Birch–Murnaghan EOS appears as

P ¼ 3KT0

2
ðC7=3 2 C5=3Þ ð5-49Þ
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Likewise, the third-order Birch–Murnaghan EOS becomes

P ¼ 3KT0

2
ðC7=3 2 C5=3Þ 1 2

3

4
ðK 0

T0 2 4ÞðC2=3 2 1Þ
� 	

ð5-50:1Þ

The third-order Birch–Murnaghan equation has been widely used to decribe the

isothermal compression of mantle minerals

Pst ¼
3

2
KT0

V0

V


 �7=3

2
V0

V


 �5=3
" #

1 2
3

4
ð4 2 K 0

T0Þ
V0

V


 �2=3

21

" #( )
ð5-50:2Þ

where KT0 is the isothermal bulk modulus, K 0
T0 is the pressure derivative of the bulk modulus

and V0 is the volume. The subscript 0 refers to ambient conditions (1 bar and 300 K).

The Vinet EOS comes as

P ¼ 3KT0C2=3ð1 2 C21=3Þ exp
3

2
ðK 0

T0 2 1Þð1 2 C21=3Þ

 �

ð5-51Þ

These equations accurately describe the compressional behaviour of real materials.

However, better precision is attained by ab initio calculations, which provide not

only a test data set but also enable us to calculate the internal energy of a system. These,

therefore, provide independent means of calculating g through the Mie–Grüneisen relation.

The volume at simultaneous pressure and temperature can be inferred from the

Mie–Grüneisen EOS:

P300 K ¼ ðPth 2 Pth 300 KÞ
where P300 K is the static pressure at 300 K, obtained by using available experimental room

temperature compression data to a third-order Birch–Murhaghan EOS:

P300 K ¼ 3

2
K0

V0

V


 �7=3

2
V0

V


 �5=3
" #

1 þ 3

4
ðK 0

0 2 4Þ V0

V


 �2=3

21

 !" #
ð5-52Þ

where Pth and Pth 300 K represent the thermal pressure at a given pressure and temperature

and the thermal pressure at 300 K, respectively. Pth is related to the vibrational Helmholz

free energy Fvib: as

Pth ¼ 2
dFvib

dv


 �
T

The usual experimental technique employs multi-anvil apparatus and synchrotron

radiation (e.g., Martinez et al., 1996). In this set-up, P and T can be controlled and

measured, large sample volumes can be employed for high-quality data and nearly

hydrostatic pressure distribution is achieved. The synchrotron radiation can be relatively

easily handled.

The isothermal compression data can also be analyzed using the Murnaghan EOS:

V

V0

¼ 1 þ K 0
T0

KT0

P


 �
2

1

K 0
T0

ð5-53Þ
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The two EOS have different assumptions concerning the second-order pressure derivative

of the bulk modulus K 00
T0: K 00

T0 is zero in the Murnaghan EOS, while it has a non-zero

negative value in the Birch–Murnaghan EOS. It is often assumed that K 00
T0 has more effect

on the refinement of K 0
T0:

5.8.8. Bulk moduli: isothermal and isentropic

Silicates may be modelled as ionic compounds with bond strength determined to a

first approximation by Coulombic forces. Bridgeman (1923), for example, demonstrated

empirical inverse correlations between bulk modulus and molar volume and described his

results in terms of an electrostatic model of inter-atomic forces. Bulk modulus–volume

relationships have since become useful for predicting the behaviour of oxides, halides,

silicates and many in the isomorphous and isoelectronic series (Anderson and

Anderson, 1970).

The isothermal and isentropic bulk moduli are distinguished by employing the

relation

KS ¼ 2V
dV

dP


 �
S

ð5-54Þ

where Ks is the isentropic bulk modulus at reference P (usually 1 bar), V is molar volume

and ðdV=dPÞS is the change in molar volume with pressure at constant entropy.

Conversion of KS to the isothermal bulk modulus ðKTÞ can be calculated from the

relationship:

KT ¼ KS

ð1 þ agTÞ ð5-55Þ

where a is the coefficient of thermal expansion and is defined as

a ¼ 1

v

dV

dT


 �
P

ð5-56Þ

with V the molar volume, T the temperature at constant pressure and g is the thermal

Grüneisen parameter, which is defined as

g ¼ d ln u

d ln V
¼ aKs

rCP

ð5-57Þ

with u the Debye temperature and CP the specific heat at constant pressure.

As a function of pressure, the P–V EOS provides a determination of density r and

bulk modulus KS (or KT), or bulk-sound velocity VBð¼ KS=rÞ:
The stability and thermodynamic properties can be derived from the quasi-

harmonic lattice dynamics employing parameter-free pair potentials derived from the

MEG formulation.
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By neglecting second- and third-order derivatives, the bulk modulus at room

temperature can be expressed as

KT ¼ KT0 þ ðdKT=dTÞPðT 2 300 KÞ

whereas the unit-cell volume is given by

VT0 ¼ V0 exp

ð
aT0 dT


 �
:

Compare this with the molar volume shown by equation (5-43).

5.8.8.1. K of mineral mixture: Reuss bound and Voigt bound
Watt et al. (1976) have shown that, for crystalline materials, the bulk modulus ðKpÞ

of a mixture is bounded by the sum of the bulk moduli ðKiÞ as a function of volume fraction

ðviÞ and the sum of compressibilities ðK21
i Þ as a function of volume fraction:

Kp
R ¼

Xn

i¼1

vi=Ki

 !
# Kp #

Xn

i¼1

viKi ¼ Kp
v

The Reuss bound ðKp
RÞ is calculated for the case of equal stress throughout an isotropic

mixture, whereas the Voigt bound ðKp
vÞ is calculated for uniform strain in an isotropic

aggregate. (Note: In the case of a melt, the real condition lies somewhere between the ideal

conditions of uniform stress and uniform strain in the structure.)

5.8.8.2. Crystal-field spectra
The velocities of seismic waves are influenced by the bulk modulus and rigidity

parameters. From the measurements of pressure-induced variation in CF spectra of

transition-metal-bearing minerals, the polyhedral bulk moduli of silicate and oxide

minerals can be determined.

From the spectrally determined bulk modulus at room pressure, Ks
0; one obtains the

first-order Birch–Murnaghan EOS as

Ks
0 ¼ 2=3P½ðDP=D0Þ7=5 2 ðDP=D0Þ�21

where D0 and DP are the crystal-field splitting parameters at room and elevated pressure,

respectively. The polyhedral moduli determined from high-pressure X-ray data conform

closely to those obtained from crystal-field spectra at high pressures. The higher

coordination sites in a crystal system in general show higher compressibilities (Hazen and

Finger, 1982) whereas a large CFSE of a cation at a site reduces the compressibility. For

example, the [CrO6] octahedron shows poor compressibility because of very large CFSE of

Cr3þ at octahedral sites.

In the upper mantle, olivine and pyroxenes are anisometric and the value of

polyhedral bulk moduli shows polarization dependence. The cations in these show a

tendency to order in very distorted coordination polyhedra leading to pleochroic spectra,

which makes the pressure-dependence spectral evaluation difficult. In the lower

mantle, fortuitously, the major phases are cubic or their polyhedral sites are also
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cubic, e.g., spinel, garnet, perovskite and periclase. In the determination of the bulk

moduli, the pressure dependence of the spectral shift, therefore, becomes more reliable

(see Section 4.4.2).

5.8.9. Velocity–volume relationship

To interprete the lateral velocity anomalies in terms of lateral temperature

anomalies, the following relationship in logarithmic form is useful:

dT ¼ ðd ln r=d ln VÞ
a

x d V ð5-58Þ

where dV is the velocity anomaly, a the thermal expansion coefficient and r the density,

while the velocity variation is due to a temperature variation. The isobaric value of ðd ln �
r=d ln VÞP yields the isothermal value. (Note: lnðr=r0Þ ¼ 2lnðV=V0Þ:)

The linear relationship between velocity and volume requires that the value

of ðd ln r=ln VÞT increases with pressure. The linearity with temperature requires that

ðd ln r=d ln VÞP decreases with increasing temperature.

The velocity–volume functions of alkali halides NaCl and KCl are nearly the same

at room pressure and temperature (near or above the Debye temperatures of these halides).

Hence, the isobaric and isothermal derivatives of ðd ln r=d ln VÞP are also nearly the same.

The value of the elastic (or anharmonic) contribution to ðd ln r=d ln VÞP appears to

increase from the 1-atm values as pressure increases.

The relationship between the isothermal and isobaric values of ðd ln r=d ln VÞ can

be obtained from

d ln v

dT


 �
V

¼ a
d ln v

d ln r


 �
T

2
d ln v

d ln r


 �
P

� 	
ð5-58:1Þ

From the above equation, one can derive the hypothesis that ðd ln r=d ln VÞP

increases with depth (Yuen et al., 1993). The linear velocity–volume relationship

requires that ðd ln r=d ln VÞT increases with pressure or decreasing volume. The isobaric

ðd ln r=d ln VÞP should increase with depth as intrinsic anharmonicity decreases with

depth.

Chopelas et al. (1996) observed that the velocities of sound in minerals (pyrope,

YAG, Al2O3, MgAl2O4 and MgO) are linear with volume as long as no phase change or

change in compressional mechanism occurs.

5.8.10. Velocity–density relationship: rules

Usually, four velocity–density systematics are used in the geophysical interpret-

ation of seismic velocities in the Earth’s interior: (a) the VP2 –r relationship (Birch, 1961),

(b) the f–ðr= �MÞ relationship (Anderson, 1967), (c) the VB2 –r relationship (Wang, 1968)

and (d) the bulk modulus–volume relationship (Anderson and Anderson, 1970). These are

discussed in the following.
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(a) Birch Law (1961). The relationship between VP and r for various silicates and oxides

takes the form of a linear equation VP ¼ aðMÞ þ br where að �MÞ and b are material

parameters. Similar relationships between Vs and r are also fairly established

(Liebermann, 1970).

(b) The f–ðr= �MÞ relation. Anderson’s (1967) seismic EOS, based on data for a set of

rocks and minerals with �M values in the range 18–34, is

r0= �M ¼ 0:048f0:323^0:12 ðr0 is density at zero pressureÞ:

(c) VB2 –r relation. A linear relationship between bulk velocity VB ð¼ ðfÞ1=2Þ and r is

established (Wang, 1968). VB is nearly proportional to VP and should depend on �M as

well as on r; just as VP does.

(d) Bulk modulus–volume relationship. The scaling relationship between bulk modulus

K0 and specific molar volume V0 at ambient conditions is in the form of

K0Vx
0 ¼ constant. For constant crystal structure, x < 1; when �M is constant, the

value of x is taken as < 4 (Shankland and Chung, 1974).

Anderson and Nafe (1965) presented an analysis of K0Vx
0 relationships, in which the

data of quartz, forsterite, basalt, etc. were included. They also derived the relation:

V0i < rðx21Þ=2

where V0i is the ambient velocity for mode i ði ¼ 1; 2; 3Þ: The velocity is seen as a nearly

linear function of density.

5.8.11. Stretch densification

A solid increases in density when stretched along an axis of negative linear

compressibility. Materials showing negative compressibilities (when hydrostatically

compressed) in one or more dimensions have been discussed by many authors (Baughman

et al., 1998). These are shown to have negative Poisson’s ratios. (Note: Poisson ratio is the

ratio of a lateral contraction to a longitudinal elongation produced by a tensile stress.)

However, a few crystals with a negative Poisson’s ratio show a negative linear

compressibility. Plastically deformed foams and honeycombs are known to provide either

negative Poisson’s ratios or Poisson’s ratios whose sums exceed unity about a stretch

direction. Some of these crystals decrease in volume and expand in two dimensions when

stretched in a particular direction and increase in surface area when hydrostatically

compressed. These show the property “stretch-densified”. The known stretch-densified

phases, such as cesium dihydrogen phosphate and lanthanum niobate, are monoclinic

phases but no stretch-densified triclinic phases have been identified.

Stretch densification may be modelled from a wine-rack-like deformation mode

(Baughman and Galvao, 1993). Molecular mechanics calculations suggest that

ferroelasticity (and associated shape-memory behaviour) should occur in combination

with negative linear compressibilities. Negative linear compressibilities may result from

various structures comprising helical chains: (i) single helices, (ii) oppositely wound
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helices (like the finger cuff) and (iii) the network of left- and right-handed helices. A tensile

stress in the helical axis direction decreases the volume (of the finger cuff) and the

cylinder-direction angle between the helices becomes ,109.468.

5.8.12. Compressibility and Si–O–Si bending

Shallow Earth materials mainly compress by bond angle bending whereas highly

symmetric closest-packed deep Earth materials compress mainly by bond shortening. For

example, Si–O–Si angle bending correlates with the compressibility of the SiO2

polymorphs (Hemley et al., 1994), which all seem to lie on the same DV –DðSi–O–SiÞ
trend (Downs and Palmer, 1994).

The compressibility of an individual silica structure is simply related to the

displacements of the kSi–O–Sil0 angles from their global equilibrium value (,1448); the

further from the equilibrium angle, the stiffer the structure.

In most framework silicates, the principal compression mechanism is T–O–T bond

bending (i.e., framework distortion) coupled with the compression of alkali–oxygen and

alkaline earth–oxygen bonds. Cation–oxygen-bond compression was shown to be

strongly influenced by Coulombic effects, whereby the bond compression becomes

inversely proportional to the cation charge. Thus, large monovalent and divalent cation

sites, typical of felspars, felspathoids, zeolites and other framework aluminosilicates,

display significant compression (Hazen and Finger, 1989). The M-cation affects the

bending energy of the T–O–T angle through the charge of the M-cation and the M–O

bond length. If the bridging oxygen is bonded to three or more atoms, the energy required

for bending the T–O–T angle is significantly increased (Geisinger et al., 1985).

The compression mechanism of the alkali felspars is dominated by the compression

of the alkali-containing channels. The compression pathway may result from the T–O–T

angle-bending energies that are linked to the alkali cation bonding. The most compressible

direction is the one which narrows the channels containing the alkali cations.

A large family of dense structures can be constructed starting with a close-packed

(or nearly so) array of oxygen atoms. Distinct structures are obtained depending on the

ordering of the Si atoms in the octahedral sties. This produces chains of SiO6 octahedra

with different degrees of kinking. The structure with no kinks is that of stishovite, which

has the CaCl2-type structure.

5.8.12.1. Ionic compressibilities
From the ionic radii in a crystal structure, ionic radius vs. bond strength systematics

have been developed. If the bond strength is defined as Z=N; where Z is the valence of the

cation and N is the coordination number, the ionic radii for Si, Al, Mg, Cr, Fe and Ca given

by Shannon and Prewitt (1969) can be shown to be a linear function of the log of the bond

strength, thereby satisfying equations of the form:

R ¼ ab logðZ=NÞ;

a and b are the fitted constants and R is the Shannon and Prewitt radius. Knowledge of a

few ionic-radius values for a particular atom in a polyhedra allows one to predict
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accurately the ionic radius for any other combination of valence and coordination number,

provided all the ions have the same spin state.

Empirical relations between the volumes of coordination polyhedra and the ionic

compressibilities have been proposed by many workers and have been used with

considerable success in predicting crystal structures at high pressures. However, Hazen

and Finger (1979) found that the relations are less dependent on structure types. Moreover,

the observed bond compressibilities, b; can be modelled by an equation of the form:

b ¼ 0:217 b2;

where the constant b is derived from linear regression and is the slope of the ionic radius–

log bond strength curve for that type of ion. Since this equation is independent of the

structure type and includes information about the coordination number, it provides a

general means for estimating the ionic compressibility of various coordination polyhedra.

The values are calculated from the relationship of Hazen and Prewitt (1977) and the

observed values. The agreement obtained is remarkably good (Kudoh et al., 1992).

5.9. Free and thermal energies: phase boundaries

Thermodynamic parameters are used to verify the consistency of phase-equilibrium

data and also to extrapolate the phase boundaries beyond the limited P–T space of the

experiments (e.g., Chopelas et al., 1994a). Estimates of the phase boundaries using the

thermodynamic parameters complement phase-boundary measurements at high P and T:
Delineation of phase boundaries helps to model the mantle compositions and temperatures

at the seismic discontinuities.

The thermodynamic parameters which are mostly employed for estimating phase

boundaries are the following:

DH : change in enthalpy

DS : change in entropy

CP : heat capacity

DV : change in volume across the phase transition.

Enthalpies are measured by calorimetry (e.g., Akaogi and Ito, 1993). Entropies and

heat capacity are derived from spectroscopic measurements using statistical thermodyn-

amics. Volumes are derived from compression measurements at room temperature and

thermal-expansivity systematics (e.g., Chopelas and Boehler, 1992b), i.e., from elastic

constants, EOS and thermal expansivity. Changes in DS for transitions by P and T changes

can be evaluated by using vibrational models. This has been done for several materials

(e.g., Chopelas et al., 1994; Chopelas, 1996). An interdependence between entropy and

volume in a given phase at different P–T conditions can be seen by considering the

equation for the entropy of a gas:

DS ¼ nR ln
V2

V1

where n is the number of moles, R is the universal gas constant and 1, 2 represent the two

states.
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This simple relationship depicts that entropy and volume are not independent

variables and this relation remains valid even in the case of a solid (mineral). The changes

in DS are quite small (of the order of a few %) but are large enough to change the

topography of a phase-diagram calculation over long extrapolations.

A phase diagram is the map of the stability domains of the co-existing phase in the

P–T plane and the slope of the co-existing boundary of phases is represented by the

Clausius–Clapeyron equation:

DP

dT
¼ DS

DV

where DV and DS are the changes in volume and entropy at the transition.

Close examination of the relationship between S and V for the forsterite to b-phase

transition (Chopelas, 1991) showed that DS=DV changed by an amount much smaller than

the experimental error over a large temperature and pressure range.

At the point of a phase change in bulk matter, the internal energy change DU from

solid to liquid must exactly balance the contribution of entropy to the total energy change,

TDS: Only at P and T where these two are equal can solid and liquid co-exist in

equilibrium. This is the relation that yields the co-existence curve of the solid–liquid phase

diagram. The equality of DU and TDS ensures that the solid and liquid forms are equally

likely to be found.

5.9.1. Free energy

At high pressures, the atoms organize themselves more efficiently, tending to pack

into a higher coordination number. Stable (thermodynamically) phases are those, which

manifest minimum energy. The internal energy as a function of crystal volume is related to

the free energy and pressure as

P ¼ 2ðdA=dVÞT ¼ 2dE=dT ; at T ¼ 08K;

where A is the Helmholtz free energy ðA ¼ E 2 TSÞ; E the internal energy and S the

entropy.

Gibbs free energy relates the extrinsic variable ðP and TÞ to intrinsic properties

ðS and VÞ of a material body. The Gibbs free energy of a pure phase and end members of

solid solution at P–T conditions equal

GðP; TÞ ¼ H0
298 þ

ðT

298
CPdT 2 T S0

298 þ
ðT

298

CP

T
dT


 �
þ
ðp

1
V dP ð5-58:2Þ

where CP is the heat capacity expressed as

CP ¼ a þ bT þ cT2 þ dT2 þ eT3 þ f T20:5 þ gT21

The Gibbs free energy for solid solution GSS can be expressed as

GSS ¼ x1G1 þ x2G2 þ RTðx1 ln X1 þ x2 ln x2Þ þ Gex
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where G1;2 is the Gibbs free energy of solid-solution end members 1 and 2. x1 is a molar

ratio in a phase, x2 ¼ 1 2 x1 and Gex is excess Gibbs free energy of the solid solution

described by polynomial (Redlich–Kister model):

Gex ¼ x1x2½A0 þ A1ðx1 2 x2Þ�

where A0 and A1 are the pressure- and temperature-dependent parameters.

5.9.1.1. Free energy change and phase boundary
At the phase boundary, there is no change in the free energy ðDG ¼ 0Þ and the locus

of the phase boundary can be written as

P ¼ DS

DV


 �
T 2

DH

DV
: ð5-59Þ

Setting the Gibbs free energy change, DG; to zero, the following equation is employed for

the determination of phase boundaries:

DG0
P;T ¼ 0 ¼ DH0

P;T 2 TDS0
P;T þ

ðP

0
DV dP ð5-60Þ

where DH is the enthalpy of transition, T is temperature, DV is the volume change across

the phase boundary and P is the pressure. The other symbols carry their usual meaning.

Further, if one assumes that the molar-volume change ðDVÞ is not a strong function

of pressure, then equation can be further simplified to

DG ¼ DH 2 TDS þ PDV :

The entropy DS in phase-boundary calculations can be estimated by selecting one point

along a measured phase boundary, solving for entropy using the equation and then

calculating the remaining phase boundary using this value. Absurd values are obtained if

the chosen point does not fall on the phase boundary. However, vibrational spectroscopic

data and statistical thermodynamics allow entropy to be determined independently.

The general condition for equilibrium is expressed as

RT ln K þ DGT;P ¼ 0

where K is a ratio of products of the activities of products and reactants and the Gibbs free

energy change, DGT;P; is approximated by the following expression (e.g., Gasparik, 1994):

DGT;P ¼ DH0
T 2 TDS0

T 2 CT1=2 þ ðDV0
T 2 bPÞP ð5-61Þ

In the above expression, C is a parameter capable of expressing the heat-capacity

differences, particularly those arising from disorder, and b can express the difference in

compressibilities. The parameters can be used only in those cases where the differences in

the heat capacities or compressibilities significantly affect the phase relations and could not

be omitted. The effects on the phase relations arising from differences in thermal

expansions are found to be less significant and thus not necessary to include.
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The free-energy change DG determines the chemical equilibria (relating reactants

and products):

DG ¼ RT lnðaman· · ·=axay· · ·Þ:

For most mineral reactions, DG ranges ,50 kcal (200 kJ) each side of zero.

Under pressure, a change in volume of 1 cm3 corresponds to a change in energy of

10 kcal (40 kJ). This small volume change can bring about a large shift in chemical

equilibria. Phase equilibria are shifted by pressure when inter-atomic bonds are broken and

reformed.

5.9.1.2. Volume change and DH
The thermodynamic relationship that exists between pressure ðPÞ; temperature ðTÞ;

volume change ðDVÞ and heat absorbed in melting ðDHÞ is

dT=dP ¼ TDV=DH:

High-density forms are, in general, favoured at high pressure. Since DH can be

positive or negative, the effects of pressure and temperature may reinforce or oppose

stabilization of the high-pressure phase. It is seen that the melting points of iron increase by

about 1008C (2128F) under pressure of 5–10 GPa. At 1 bar (105 Pa), NaCl melts in an iron

crucible but, at 10 GPa pressure, iron can be melted in an NaCl crucible. This is because

the DH for the melting of iron is very small compared with the DH for melting of NaCl.

5.9.1.3. Activation volume and activation enthalpy
When the activation volume ðVpÞ is considered equal to the formation volume of

a vacancy, and the vacancy is considered as a cavity in a solid under pressure, the

semi-empirical model of O’Connell (1977) can be used, wherein

Vp ¼ Vp
0 ð1 þ PK 0

0=K0Þ21=K 0
0

where Vp is the activation volume at pressure P; Vp
0 is the activation volume at zero

pressure and K 0
0 is the pressure derivative of K0: K 0

0 is defined as 4/9 of the bulk modulus

ðKÞ of the matrix.

At low pressure (e.g., 1 GPa), the normal stress at the inter-phase boundary will be

low and could even be tensile owing to the volume change of transformation. At higher

pressure (e.g., 15 GPa), there will be a high compressive stress normal to the boundary.

Changes in the structure of the inter-phase boundary arising from differential stress

can result in changes in the activation volume. Because there are no estimates of Vp

(or its pressure dependence) for diffusion across inter-phase boundaries in minerals, Rubie

and Ross (1994) used an empirical model (O’Connell, 1977) with Vp decreasing from

12 cm3 mol21 at 1 bar to about 4 cm3 mol21 at 15 GPa (Kirby et al., 1996).

The relationship between the Gibbs free energies for the perovskite and enstatite

phase (Mg, Fe)SiO3 at low and high pressure are schematically shown in Fig. 5.13

as a function of the configurational coordinate describing the phase transformation.
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It is assumed that the value of Ep; the activation energy, is equivalent at low and high

pressure. The energy of transformation at zero pressure, Etr; is shown for comparison.

For silicate perovskite, the activation enthalpy ðHp ¼ Ep þ PVpÞ is plotted in

Fig. 5.14 as a function of pressure (assuming that the activation volume varies between 1

and 30 cm3 mol21). The top scale indicates the depth of the Earth that corresponds to the

pressure given on the bottom scale. The extrapolated values of Hp for perovskite are

compared with a range of values found for olivine. At 670 km depth, if Vp for perovskite is

small (1–10 cm3 mol), then Hp is still small (#300 kJ/mol) at comparable pressures.

Fig. 5.14 illustrates the importance of determining Vp in order to determine Hp for minerals

deep in the Earth (Knittle and Jeanloz, 1989)

5.9.1.4. Communal entropy: fluid
Kirkwood (1950) introduced the concept of communal entropy ðDcomSTVÞ; which

represents the additional entropy a model fluid acquires when its molecules are free to

move around the whole available volume, compared with a crystal or glassy state in which

Figure 5.13. The relationship between the Gibbs free energies for the perovskite and enstatite phase of

(Mg, Fe)SiO3 at low and high pressure are schematically illustrated as a function of the configurational coordinate

describing the phase transformation. It is assumed the value of Ep; the activation energy, is equivalent at low and

high pressure. The energy of transformation at zero pressure, Etr is shown for comparison (Knittle and Jeanloz,

1987a, q 1887 AAAS).
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the molecules are naturally constrained. An alternative communal entropy can similarly be

defined as the entropy difference between the single-occupancy (SO)-cell model and the

free fluid at the same temperature and pressure ðDcomSTPÞ: These two communal entropies

are related as

DcomSTV ¼ DcomSTP þ R ln PV=RT ð5-62Þ

At constant T and vanishing P; the Gibbs free-energy difference between the SO-cell

model and the free fluid is exactly RT : The SO-cell model undergoes phase transition at

pressure Pp; up to which the EOS is given by

Pp
SO ¼ ½1 þ p

ffiffiffi
2

p
ðV0=VÞ4=3 þ ðp

ffiffiffi
2

p
Þ2ððV0=VÞ3 þ ðV0=VÞ6Þ�=Vp ð5-63Þ

where Pp
SO is a measure of the reduced pressure in hard-sphere units of kT=s 3 (where k is

Boltzmann’s constant), Vp is the reduced volume in units of Ns 3 and V0 is the minimum

volume at close packing.

Figure 5.14. The activation enthalpy ðHp ¼ Ep þ PVpÞ as a function of pressure for silicate perovskite.

The activation volume is assumed to vary between 1 and 30 cm3 mol21. The top scale indicates the depth in the

Earth corresponding to the pressure shown on the bottom scale. The extrapolated values of Hp for perovskite are

compared with a range of values found for olivine. If Vp for perovskite is small (1–10 cm3 mole), then at 670 km

depth, Hp is still small (#300 kJ/mol) in comparison with a representative silicate such as olivine at comparable

pressures (Knittle and Jeanloz, 1987, q 1987 American Geophysical Union).
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For a thermodynamic hard sphere (fluid), the pressure, at a fixed temperature and

volume, is directly related to the collision frequency as

Pp ¼ ð1 þ nCðzÞ
ffiffiffiffi
p

p
=3tÞ=Vp;

where nC is the number of collisions in time, t: Only first neighbours collide in the stable

crystal region.

5.9.1.5. Heat capacity, entropy and phase boundaries
To explain the T-dependence of the heat capacity of solids, Einstein (1907)

proposed the quantization of vibrational energy (as a single characteristic frequency). He

unified the nascent theory of radiation quanta (of Planck) with the thermodynamics of

solids in his groundbreaking paper “Planck’s theory of radiation and the theory of

specific heat” (Einstein, 1907). Here, he demonstrated that if the atomic vibrations are

quantized (in accordance with Planck’s nascent theory) then the heat capacity of a solid

will be temperature dependent rather than be a constant, as given by the Dulong–Petit

law of classical thermodynamics. Taking clues from heat capacities, Einstein plotted the

heat capacity of diamond as a function of temperature to show that atomic vibrations in

solids are quantized. In Einstein’s picture, the heat capacity increases monotonically

from zero with increasing temperature (Fig. 5.15). The temperature (x-axis) is scaled to

the Einstein temperature qE ¼ 1,320 K. The heat capacity (y-axis) is given in

cal mol21 K21). Debye generalized the quantization rules to include all lattice vibrations

(like standing waves). In the modified form, the heat capacity in simple systems

increases as a power of the temperature. The powers correspond to the dimensions

involved, viz. for 3D systems the power is 3 and for 2D and 1D systems the powers are

2 and 1, respectively.

The heat-capacity measurement provides information on the quantized nature of

vibrational structure. The constant volume heat capacity, CV; can be estimated from the

Figure 5.15. Heat capacity of diamond vs. Einstein temperature (Einstein, 1907).
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relations

CV ¼ 3Nk

ða
0

ex

ðex 2 1Þ2
x2gðnÞdn ð5-64Þ

where N is the number of atoms in the unit cell, k is the Boltzmann constant, n is the

frequency of vibration, x is hn=kT ; h is Planck’s constant and gðnÞ is the DOS (vibrational

model).

The thermodynamic properties and EOS parameters for phases stable at P–T

conditions of the mantle are presented by Saxena and Shen (1992), and Saxena et al.

(1993). For these, the phase-equilibria data, calorimetric measurements and relationship

between CP; CV; thermal expansion a; and compressibility b are taken into account.

(Note: CP ¼ CV þ a2VT=b:)
The constant volume heat capacity, CV; can be converted to the constant pressure

heat capacity, CP; using

CP ¼ CV þ TVa2KT ð5-65Þ

where a is the thermal expansivity and KT is the isothermal bulk modulus. To obtain

entropy, the following is integrated over temperature

dS ¼
ðT1

0

CP

T
dT ð5-66Þ

where T is the temperature under study.

Variations of DH with temperature can be estimated using the heat capacity

obtained from equation (5-65) in

DH0ðTÞ ¼ DH0ðT0Þ þ
ðT

T0

DCP dT ð5-67Þ

Changes in volumes can be estimated by first using the bulk modulus and its pressure

dependence in the third-order EOS (Birch, 1978). The volumes are then corrected for

temperature with 1-atm thermal expansivity systematics (e.g., Chopelas and Boehler,

1992). This method circumvents the need to compress the materials at high temperatures

where the bulk moduli are poorly known.

At the point of a phase change in bulk matter, the internal energy change, DU; from

solid to liquid must exactly balance the contribution of entropy to the total energy change,

TDS: Only at P and T where these two are equal can solid and liquid co-exist in

equilibrium. This is the relation that yields the co-existence curve of the solid–liquid phase

diagram. The equality of DU and TDS ensures that the solid and liquid forms are equally

likely to be found.

Heat capacity cannot be measured by performing calorimetry at pressure. This

problem can be circumvented by measuring the vibrational spectra of minerals at mantle

pressures and by utilizing these data to calculate heat capacity and entropy as a function of

both temperature and pressure (e.g., Kieffler, 1980, 1982). The mode-Grüneisen
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parameters ðgiÞ obtained from the same experiments permit direct calculation of gth as a

function of pressure.

Kieffer’s (1979) lattice dynamics model accurately reproduces heat capacity CV

and entropy S at 1 atm for forsterite (Akaogi et al., 1984) and fayalite (Hofmeister, 1987).

The pressure dependence of the other properties is computed when CVðPÞ are known or

can be calculated.

Employing the heat capacity ðCPÞ; thermal expansion ðaÞ and density of solids and

melts ðrÞ; an adiabatic P–T trajectory can be calculated from the relation:

ðdT=dPÞS ¼ aT

rCP

ð5-68Þ

The geotherms corresponding to MORB adiabats have been determined as 1,3008C

(Nisbet et al., 1993). This adiabat intersects the olivine–b-phase transition at 1,3958C

and 13.7 GPa (410 km). In this transition, the reaction is exothermic, while the g-spinel

to perovskite þ Mg-wüstite phase transition is an endothermic reaction and a

temperature decrease should occur across 660 km. However, the phase boundaries

representing equilibrium reactions should run in either direction (up for low pressure or

down for high pressure) with the perturbing P and T ; and the sign (positive or negative)

of the changes in enthalpy and entropy should change accordingly. This also signifies

that the olivine to b-phase transition is exothermic and the transformation of g-spinel to

perovskite þ Mg-wüstite is endothermic.

5.9.2. Thermal-expansion coefficient

The effect of pressure on the thermal-expansion coefficient is determined (Birch,

1952) by the relation:

a ¼ a0

V

V0


 �dT

where dT ð; qÞ is the second Grüneisen parameter, which is assumed to be independent of

temperature and pressure above Debye temperature (e.g., Anderson et al., 1991). a0 and V0

are the thermal-expansion coefficient and molar volume at some reference state. The

thermal-expansion coefficient at higher temperatures and pressures is calculated using the

above equation along an isothermal. The volume dependence of thermal expansion in the

case of alkali halides has been expressed as (Yagi, 1978):

a=a0 ¼ ðV=V0Þd0

where d0 ¼ 2ð1=aKÞðdK=dTÞP: From static P–V –T measurement, d0 is directly

measured and a systematic difference of d0 is observed between alkali halides with

NaCl structure ðd0 ¼ 2–3Þ and those with CsCl structure ðd0 ¼ 6 to ,7Þ: The volume
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relation is expressed as

V ¼ V0 exp

ðT

T0

aðTÞdT


 �
ð5-69Þ

This relation is corroborated by the experiments conducted by Fei et al. (1992) on

(Mg0.6Fe0.4)O magnesiowüstite in the range of T ¼ 1,100–2,000 K and P reaching up to

30 GPa.

Temperature increases the volume while pressure decreases it. The relations are

defined by the thermal expansion coefficient, a; and the bulk modulus:

a ¼ 1

V
:
dV

dT
or

1

K
¼ 1

V
:
dV

dP
: ð5-70Þ

The variation of frequency with pressure provides a basis for estimating entropy vs.

pressure, which directly yields thermal expansivity through the Maxwell equation:

dV

T


 �
P

¼ 2
dS

dP


 �
T

ð5-71Þ

and the thermal expansivity is then

a ¼ 1

V

dV

dT


 �
P

To calculate a from the variation of entropy vs. pressure, the molar volume of the phase

must be known at the pressure and temperature of interest. At higher pressures, the bulk

moduli ðK0Þ and their pressure derivative ðK 0
0Þ for each of the phases are used to calculate

the volumes at various pressures. Any uncertainty in volume determination does not

significantly contribute to uncertainty of expansivity. An accurate computation of the

entropy is more important than the volume.

The thermal expansivity is generally inversely proportional to the bulk modulus

ðK0Þ: This is because gth and V=CV vary little among the minerals. It is reasonable that a

very incompressible mineral such as stishovite will have the lowest a-values whereas the

more compressible ones (e.g., orthoenstatite) will have one of the highest a-values at RT

(see Table 5.5).

5.9.2.1. a values: spectroscopic vs. volumetric
Since the vibrational mode frequencies of crystals depend solely on the variation

of volume, the volume thermal expansivity ðaÞ; isothermal bulk modulus ðKTÞ and

the pressure and temperature dependences of frequency ni of a vibrational mode are

related by

aKT ¼ 2ðd�vi=dTÞP=ðd�vi=dPÞT ð5-72Þ

The value of ðd�vi=dTÞP can be reliably measured through experiments, followed by KT;
ðd�vi=dPÞP and a; using the above relationship if the values of the other three quantities are

available.
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At RT the normal modes or vibrations of a crystal lattice at or below ,300 cm21

are predominantly active in the crystal. This can be seen in the anti-Stokes spectrum where

the modes above 300 cm21 have almost no intensity. As temperature is increased, the

intensity of the higher energy modes increase in the anti-Stokes spectrum since more bonds

(modes) become active in the expansion.

At high temperatures, the exact value of a is underestimated. When the higher

energy vibrations become active, the pressure shifts of these modes will increase.

However, the high-energy modes of the high-pressure polymorphs are inter-coupled

and thus are not separable into independent contributions from various polyhedral units

(e.g., MgO6 octahedra and SiO4 tetrahedra).

Using the thermodynamic Maxwell relation (equation (5-71))

ðdS=dPÞT ¼ 2ðdV=dTÞP

the values of thermal expansities ðaÞ can be determined. In this case, the entropies at high

pressures are derived using a statistical method and spectroscopic data.

The spectroscopically determined thermal expansivities of minerals correspond

very well with those derived from volumetric data. The results of some minerals are

tabulated in Table 5.6 (Chopelas, 2000).

TABLE 5.6

Comparison of spectroscopically determined thermal expansivity a with those derived from volume

measurements (Source: Chopelas, 2000)

Mineral Spectroscopic (1025 K21) Volumetric (1025 K21)

Forsterite 2.40a 2.72b

b-Mg2SiO4 1.89a 2.01c

g-Mg2SiO4 1.84a 1.68d

MgO 2.79a 3.11e

Stishovite 1.33(8)0 14.2 g

MgSiO3, Orthoen. 3.25(10)0 2.2–4.77 h

MgSiO3, High Clen. 2.59(10)0 Not measured

MgSiO3, Majorite 2.24(9)0 2.36

MgSiO3, Ilmenite 1.7(1)0 –

MgSiO3, Perovskite 1.8(1)a 1.72i

aChopelas (1996).
bKajioshi (1986).
cSuzuki et al. (1980).
dSuzuki et al. (1979).
eIsaak et al. (1989).
fChopelas (2000).
gFei et al. (1990), Ito et al. (1974a) and Ito et al. (1974b).
hSee Chopelas (2000).
iFunamori et al. (1993), Utsumi et al. (1995), Wang et al. (1994).
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5.9.3. Grüneisen parameter (g)

The Grüneisen parameter ðgÞ is used for assigning constraints on geophysically

important parameters such as the P; T dependence of the thermal properties of the mantle

and core, the adiabatic temperature gradient and the geophysical interpretation of

Hugoniot data.

5.9.3.1. Mode Grüneisen (M-G) parameter
The first mode Grüneisen parameter is calculated as

gi ¼ 2
d ln ni

d ln V


 �
ð5-73Þ

where ni is the frequency of the ith vibrational mode and V is the corresponding unit-

cell volume. This is equivalent either to giðVÞ ¼ 2ðV=niÞðdni=dVÞ or to giðPÞ ¼
ðKT=niÞðdni=dPÞ:

Calculation of the first- and second-mode Grüneisen parameters, gi and qi;
from frequency and pressure determinations is analogous to deriving bulk modulus KT

solely from volume and pressure measurements.

The second Grüneisen parameter is calculated from

qi ¼ d ln ni=d ln V

Equivalently,

qi ¼ ðV=giÞðdgi=dVÞ ¼ 1 þ gi 2 ðV2=giniÞðd2ni=dV2Þ

qi ¼ ðKT=giÞðdgi=dPÞ ¼ g i
2 K 0ðK2

T=giniÞðd2ni=dP2Þ:

5.9.3.2. Thermal Grüneisen parameter (gth)

The thermal Grüneisen parameter ðgthÞ has been discussed in the following in

relation to the spectroscopic M-G parameter. If gi for the mode represents all the vibrations

of the crystal (Gillet et al., 1998), then one can write

gi , gth ¼ g0ðV=V0Þq

where g0 represents the extrapolated value of gth at zero pressure with the volume

dependence of gth explicitly given by parameter q:
The Grüneisen thermodynamic parameter is calculated as

gth ¼ aK0TV0

CV
ð5-74Þ

where a is the 1-atm thermal expansion coefficient, K0T is the isothermal bulk modulus at

1 atm, V0 is the molar volume at 1 atm and CV is the molar-heat capacity at constant

volume ðCV ¼ CP 2 a2K0TV0TÞ: The specific heat at constant pressure ðCPÞ is related to

the thermal-expansion coefficient ðaÞ and bulk modulus as CP ¼ Cv þ a2K0T:
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This parameter is of significant interest to geoscientists because it determines the

limitations on the thermoelastic properties of the lower mantle and core. It is directly

related to the EOS.

The spectroscopically derived weighted average Grüneisen parameter is kgl ¼P
Cigi=Ci; where Ci is the Einstein heat capacity of mode i and gi is the Grüneisen

parameter of mode i: A comparison of the weighted average of the spectro-

scopic Grüneisen parameters kgl ¼
P

Cigi=CiÞ with the thermal Grüneisen parameter

gth ¼ ðaKTV=CVÞ is presented in Table 5.7 (Chopelas, 2000). Discrepancies between

kgl and gth have been observed in all minerals studied and kgl is always 10–15% lower

than gth; suggesting that many materials cannot be well described as Debye solids.

The dependence of gth on Fe content in olivine series is discussed in Section 6.5.2

(see Fig. 6.30).

In the vibrational spectrum of silicate minerals, all the high-energy modes are

associated with the very incompressible SiO4 tetrahedra and have very low mode gth values.

5.9.3.3. Density and Grüneisen parameter
The density ðrÞ and the Grüneissen parameter ðgÞ are related as

ðg=g0Þ ¼ ðr=r0Þ2q

where q is an arbitrary constant (Anderson, 1968). The EOS along the solidus is obtained

when r is determined from P: To obtain rðPÞ; the bulk modulus–pressure curve KðPÞ is

used. An empirical KðPÞ is obtained from the shock-wave Hugoniot.

TABLE 5.7

Comparison of the weighted average of the spectroscopic Grüneisen parameters kgl ð¼
P

Cigi=CiÞ with the

thermal Grüneisen parameter gth ð¼ aKTV=CVÞ (Source: Chopelas, 2000)

Mineral kgl gth

Forsterite 1.19a 1.29

b-Mg2SiO4 1.29b 1.39

g-Mg2SiO4 1.10c 1.25

MgO 1.47d 1.52

Stishovite 1.40e 1.34

MgSiO3 Orthoenstatite 1.20e 1.28

MgSiO3 High Clinoen 1.09e 1.22f

MgSiO3 Majorite 1.32e 1.28f

MgSiO3 Ilmenite 1.24e 1.22f

MgSiO3 Perovskite 1.43d 1.42

Parameters for all minerals for calculation of gth are available in Chopelas (2000).
aChopelas (1990).
bChopelas (1991).
cChopelas et al. (1994).
dChopelas (1996).
eChopelas (2000).
fUsing a at room T determined by Chopelas (2000).
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5.9.3.4. Debye model
Using Einstein and Debye approximations, the Grüneisen parameter in the Debye

model, gD; bears the relation:

gD ¼ 2d ln QD=d ln V ;

where QD is an effective Debye temperature (equivalent to the Einstein temperature, QE;
by the relation QD ¼ 5=3QE for T . QD).

Spectroscopic data and theoretical predictions on silicate perovskite indicate that

gth of Mg-silicate perovskite is 1.7–2.0 (Hemley, 1991), while QD values range from 725

to 1,200 K (Stixrude and Bukowinski, 1990). However, the vibrational DOS is not well

represented by a Debye model.

5.9.3.5. Anderson–Grüneisen parameter
The variation of a with pressure is characterized by the Anderson–Grüneisen

parameter gT;S; which is defined as

gTS ¼ 2
1

aKT

dKT

dT


 �
P

ð5-75Þ

which is nearly constant at Earth’s internal temperature conditions. When gT;S is

independent of P and T; it equals ðd ln a=d ln VÞP:
Intregation of first and second Grüneisen parameters with respect to temperature at

constant volume would lead to the Mie–Grüneisen expression for g:

g ¼ PthV

Eth

ð5-76Þ

(Pth ¼ thermal pressure and Eth ¼ thermal energy).

In principle, Pth and Eth can be calculated from ab initio free-energy calculations

(e.g., Vocaldo et al., 1999, 2000).

In the Mie–Grüneisen approach, the total pressure, PtotðV ;TÞ; can be expressed as a

sum of the static pressure, Pst; i.e., isothermal compression at 300 K and the thermal

pressure increases along an isochore, DPth:

PtotðV; TÞ ¼ PstðVÞ þ DPthðV ; TÞ:

Empirical EOS for both (Mg,Fe)SiO3 and (Mg,Fe)O, based on an anharmonic

Einstein model, were developed by Jeanloz and Knittle (1989). These enable one to predict

the densities of both the phases under lower-mantle pressures and temperatures. Above the

Debye temperature, a decrease in gT is expected (Anderson et al., 1990) and hence the

measurements need to be extended to higher temperatures (e.g., .900 K).

5.9.3.6. Vinet equation
The Vinet equation (Vinet et al., 1987) is derived from a scaled approximate form

for the energy:

EðrÞ ¼ 2DEð1 þ apÞ exp½2ap�
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where

ap ¼ r 2 r0

l
;

and DE is the binding energy, and r is the length per electron. This gives

PðxÞ ¼ 3KT0ð1 2 xÞx22 exp½3=2ðK 0
T0 2 1Þð1 2 xÞ�

where x ¼ ðV=V0Þ1=3: The energy can be expressed as

E ¼ E0 þ
4KT0V0

ðK 0
T0 2 1Þ2

2 2V0KTT0ðK 0
T0 2 1Þ22

½5 þ 3K 0
T0ðx 2 1Þ2 3x� exp½23=2ðK 0

T0 2 1Þðx 2 1Þ�

Vinet EOS works surprisingly well for a wide range of types of materials and for

compressions of up to h ¼ 0:1:

5.9.3.7. Holzapfel equation
The Holzapfel EOS (Holzapfel, 1996) is similarly given by

PðxÞ ¼ 3K 0
T0x25ð1 2 xÞ exp½ðcx þ c0Þð1 2 xÞ�

where c0 and c are chosen to give K 0 and the limiting Fermi gas behaviour as x ! 0:
If c ¼ 0; one gets a three-parameter ðV0; KT0; and K 0

0Þ EOS that behaves better at

extreme compression (Hama and Suito, 1996):

PðxÞ ¼ 3KT0x25ð1 2 xÞ exp½c0ð1 2 xÞ� ¼ 3KT0x5ð1 2 xÞ exp
3

2
ðKT0 2 3Þð1 2 xÞ

� 	

5.9.3.8. Logarithmic equation
The logarithmic equation EOS (Poirer and Tarantola, 1998) give at third order:

P ¼ KT0 ln
V0

V
þ K 0

T0 2 2

2


 �
ln

V0

V


 �2� 	

For extremely compressible matter, e.g., hydrogen, the Vinet EOS is more accurate

than the Birch equation. For most of the fits, the V0 is fixed at a known value of

23.0 cm3 mol21 (Silvera, 1980). The best fit given by the Vinet EOS corresponds

well with the fits using Birch or Holzapfel but the logarithmic EOS fails completely

(Cohen et al., 2000).

5.9.3.9. Microscopic and macroscopic
For assessing the microscopic origin of thermodynamic properties such as thermal

expansivity and entropy, the M-G parameter gi (obtained from least square fits of the high-

pressure mid-infrared and Raman data; Chopelas and Boehler, 1992) is important. The
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value of g0i (value at zero pressure) is comparatively large, i.e., it has an anharmonicity at

low pressure.

The M-G parameter relates the pressure and volume derivatives of the frequency of

interest. In most cases, the frequency of the far-IR bands depends linearly on volume and

the frequency of mid-IR bands can be related to either volume or pressure.

The g varies as a function of pressure and volume (e.g., Poirier, 1991) as

g ¼ 2
V

2

d2ðPV2x=3Þ
dV2

dðPV2x=3Þ
dV

0
BB@

1
CCAþ ðx 2 2Þ

3
ð5-77Þ

Thus, g behaves differently with different values of parameter x and the Grüneisen

parameter is a direct function of the chosen EOS, which defines P as a function of V:
In the absence of reliable high-P; high-T experimental data, thermoelastic

parameters, such as the Grüneisen parameter, cannot be reliably obtained from

approximate descriptions. Rather, they can be derived from rigorous, highly accurate,

quantum-mechanical free-energy calculations.

5.9.4. Thermal expansion and crystal-field changes

Temperature has a 2-fold influence on a crystal structure. Increased thermal

motions cause increased amplitude of atoms vibrating about their crystallographic

positions and thermal increase in inter-atomic distances causes a decrease in the value of

crystal-field splitting, D; at elevated temperature. From these considerations, the

relationship between the crystal-field shifting and the thermal expansivity is known to be

DT

D0

¼ D0

DT


 �5=3

¼ ½1 þ aðT 2 T0Þ�25=3 ð5-78Þ

Because of thermal vibration, the absorption bands broaden and, due to the

expansion of the M–O distance, the band centres move to slightly longer wavelengths, i.e.,

are “red-shifted”. Thus, high pressures and elevated temperatures show compensatory

effects on band maxima of absorption bands in crystal-field spectra. But the cumulative

effect of both these causes an intensification of the absorption bands through the effects of

increased covalency and increased vibronic coupling.

5.9.5. Radiative-heat transport

Minerals absorbing radiation in the near-IR and visible regions control the

radiative-heat transport mechanism in the mantle (Clark, 1957).
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The energy transfer of photons through a grey body (i.e., one in which absorption by

photons is finite, non-zero and independent of wavelength) is given by (Stacky, 1969)

Kr ¼
16n2ST3

3a
ð5-79Þ

where Kr is the effective radiative conductivity, n is the mean refractive index, T is

temperature, a is the mean absorption coefficient and S is the Stefan’s constant. S relates

the power E (i.e. the rate of energy emission per unit area) of an ideal black body to

absolute

dE

dT
¼ ST4 ð5-80Þ

temperature, T ; as follows.

In octahedrally coordinated Fe2þ, the 2t2g ! 4eg ligand-field transition occurs at

near-IR. Absorption of black-body radiation by this transition is believed to retard

significantly the radiative heat flow in the upper mantle (Shankland et al., 1974). However,

the large increase in the 2t2g ! 4eg band energy due to an HS ! LS transition of Fe2þ in

the lower mantle may make the lower-mantle iron (II) mineralogy much more transparent

to black-body radiation and, hence, an increase in the thermal conductivity of the lower

mantle.

5.9.6. Thermal pressure: Eularian strain

Thermal pressure can be described by using the Debye model (Jackson and Rigden,

1996), and by employing the following relationship:

DPth ¼ gðVÞ
V

½EthðV ; TÞ2 EthðV; T0Þ� ð5-81Þ

Eth ¼ 9nRT

ðu=TÞ3

ðu=T

0

j3 dj

ej 2 1
ð5-82Þ

g ¼ g0

V

V0


 �h

ð5-83Þ

u ¼ u0 exp
g0 2 gðVÞ

q


 �
ð5-84Þ

In the above relations, Eth is the vibrational energy for a given volume and temperature, R is

the gas constant, g is the Grüneisen parameter ðq is the volume dependence of the

Grüneisen parameter ðq ¼ d ln g=d ln VÞÞ; which is assumed to be constant, n is the

number of atoms per formula unit and u is the Debye temperature.

The Debye approach (equation (5-84)) provides a description of thermal pressure

without the truncation problem that can arise when one uses a polynomial expansion
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(Jackson and Rigden, 1996). This enables determination of thermoelastic parameters and

their pressure and/or temperature dependence in an internally consistent fashion (Shim and

Duffy, 2000).

The pressures and their uncertainties are derived from room-temperature–volume

measurements across the sample. Elastic models of samples in the laser-heated diamond

cell indicate that the thermal pressure for perovskite at temperature above 1,300 K may be

3–5 GPa.

In materials at high temperatures and low strain, there is a large volume dependence

of the thermal pressure (Wolf and Jeanloz, 1985). Birch’s (1978) normalized pressure, F; is

given as (see equation (5-52)):

F ¼ P½3f ð1 þ 2f Þ5=2�21; ð5-85Þ

where f is the Eularian strain measured as f ¼ 1=2½ðV0=VÞ2=3 2 1�:

5.9.6.1. Thermal pressure as a function of volume
The temperature derivative of the isothermal bulk modulus at constant volume is

obtained from the thermodynamic identity:

dKT

dT


 �
V

¼ dKT

dT


 �
P

þ dKT

dP


 �
T

aKT ð5-86Þ

A non-zero value of ðdKT=dTÞV would suggest a volume dependence on thermal pressure.

The thermal pressure as a function of volume at a constant temperature is expressed by

ðT ¼ 300 KÞ:

Pth ¼ a þ b ln
V0

V


 �
; ð5-87Þ

where

a ¼
ðT

300
aKT dT

and

b ¼ dKT

dT


 �
ðT 2 300Þ

For an earlier discussion involving EOS, see the second half of Section 5.8.7.3.

5.10. Phase transitions

The kinetics of phase transitions may elucidate the dynamics of the process in the

Earth. Phase transformation in minerals defines the fields of their stability as a function of

P; T and their intensive variables. At any P; T; the stable phase is one in which the free

energy is the lowest. However, transitions do not always occur at thermodynamic
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equilibrium pressures since kinetic factors are also involved. For this reason, it is usual to

observe that, in an experiment of increasing pressure, a higher pressure than the true

equilibrium pressure, Peq; is needed to induce transition. Again, when pressure is

decreased, the reverse transition does not occur at Peq; but at a pressure below the

equilibrium pressure.

To study electronic and phase transitions, several techniques, e.g., Raman and

Brillouin scattering, absorption and luminescence measurements, energy dispersive X-ray

diffraction, and conductivity measurements, are employed. The phase transitions observed

in minerals include displacive phase transitions, cation-ordering transitions (e.g., Al–Si

and Na–K) and orientational order–disorder phase transitions. The different types of

phase transitions observed in minerals are given in Table 5.8 (Dove, 1997), which offers

tabulated examples of phase transitions in minerals that occur with a change in either

temperature or pressure. This was extracted from an electronic search of the Science

Citation Index for the years 1981–1996. In some cases, details such as symmetry change

may still be unknown or uncertain (marked with a “?”). The transformational behaviour of

some materials may be affected by the presence of sample impurities, sample treatment or

kinetic factors, which can account for some observed uncertainties (source: Dove, 1997).

Reconstructive phase transitions have been observed in complex silicates such as

olivine and pyroxene. The phase-transition behaviour of framework silicate minerals is of

considerable interest. The concomitant development of mean-field theories of phase-

transition behaviour, microscopic computer modelling and new experimental techniques

probing a range of length scales and dynamical phenomena have facilitated a profound

re-evaluation of the structural behaviour of complex silicates.

Many common rock-forming aluminosilicates exhibit diverse structural behaviour

with changing temperature and pressure such as cation order–disorder processes (e.g., Fe–

Mg, Al–Si) and elastic instabilities that lead to displacive phase transitions. The coupling

between individual order parameters, often by means of a common lattice strain, can make

the overall behaviour very complex. Many transitions involve distortions of the alumino-

silicate framework. In the context of phase transition, it should, however, be noted that Al

and Ca enter into solution in major ferromagnesian phases and modify the phase

relationship. But this role could not yet be described in detail from experimental studies. In

the case of non-reconstructive-type phase transition, the results of dynamic and static

experiments agree satisfactorily.

5.10.1. Mixed and quasi-stable phases

However, in reconstructive phase transition involving time sufficient enough for

atomic diffusion, the scenario becomes different as, for the onset of phase transition,

an overriding pressure is required and a wide mixed phase region is observed before the

high-pressure phase region. This may be illustrated with quartz.

Phase transition in quartz starts around 13 GPa, which is higher than the

equilibrium transition pressure to stishovite phase at ,9 GPa, although with no indication

of the appearance of the coesite phase. A wide mixed-phase region is observed to persist up
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TABLE 5.8

Examples of phase transitions (after Dove, 1997)

Material TC or PC Change Comments Reference

Quartz, SiO2 848 K P6222 ! P3121 Two-stage displacive phase transition involving an

intermediate incommensurate phase

Castex and Madon

(1995); Dolino and

Vallade (1994)

Cristobalite, SiO2 530 K, 1.2 GPa Fd3m ! P41212;
P41212 ! P21

First-order displacive phase transitions involving

zone-boundary instabilities

Dove et al. (1995);

Palmer et al. (1994)

Tridymite, SiO2 748 K, 623 K P63=mmc ! P6322;
P6322 ! C2221

A number of displacive phase transitions occur on

cooling. The two given here involve zone-centre

instabilities

Cellai et al. (1995)

Leucite, KAlSi2O6 960 K Ia3d ! I41=acd;
I41=aCd ! I41=a

Two-stage displacive phase transition, the first being

a ferroelastic phase transition. Other materials with

the leucite structure but different chemical compo-

sition can undergo other displacive and order–

disorder phase transition

Dove et al. (1995)

Albite, NaAlSi3O6 1,250 K C2=m ! C �1 Ferroelastic phase transition. An Al–Si ordering

transition follows at lower temperatures but, because

this does not involve a further symmetry change, it

does not lead to a distinct transition temperature.

Substitution of Kþ for Naþ suppresses the

ferroelastic phase transition and is only weakly

dependent on temperature

Xiao et al. (1995b)

Anorthite, CaAl2Si6O16 560 K I �1 ! P�1 Displacive phase transition involving a zone-

boundary instability. Substitution of Sr2þ for Ca2þ

allows a ferroelastic phase transition although the

ordering transition to an I2=m phase

Daniel et al. (1995);

Phillips and Kirkpa-

trick (1995)

Kalsilite, KAlSiO4 A preliminary study indicates the presence of one or

more phase transitions, but details remain sketchy

Capobianco and

Carpenter (1989)

Kaliophilite, KAlSiO4 1,000 K P6322 ! P63ð?Þ Apparently a zone-centre transition, but details are

sketchy

Cellai et al. (1992)
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TABLE 5.8 (continued)

Material TC or PC Change Comments Reference

Calcite, CaCO3 1,260 K, 1.5 GPa R�3C ! R�3m;

R�3c ! P21=c

Orientational order–disorder phase transition invol-

ving the carbonate molecular ions. The ordering

involves doubling of the size of the unit cell. An

additional phase transition occurs at 2.2 GPa

Dove et al. (1997);

Fiquet et al. (1994)

Soda niter, NaNO3 560 K R�3c ! R�3m Orientational order–disorder phase transition invol-

ving the nitrate molecular ions. The ordering

involves doubling of the size of the unit cell

Harris et al. (1990)

Akermanite, Ca2MgSi2O7,

and related melilites

343 K P�421m ! Inc Incommensurate displacive transition. A possible

phase transition to another commensurate phase at

low temperature has not yet been identified

Brown et al. (1994);

Webb et al. (1992)

Cordierite, Mg2Al4Si5O18 P6=mcc ! cccm Al–Si ordering transition Redfern et al. (1989a);

Thayaparam et al.

(1996)

Perovskite 1,384 K, 1,520 K Cmcm ! Pbnm;
Pm3mð?Þ! CmCm

Displacive phase transition involving tilt of TiO6

octahedra, with evidence of phase transition to

tetragonal and cubic phases at higher temperatures

Guyot et al. (1993);

Redfern (1996)

Titanate, CaTiSiO5 497 K C2=c ! P21=a Zone-boundary displacive phase transition Bismayer et al.

(1992);

Zhang et al. (1995)

Staurolite Cmm ! C2=m Al-vacancy ordering transition Hawthorne et al.

(1993)

Colemanite,

CaB3O4(OH)3.H2O

270 K P21=a ! P21 Ferroelectric phase transition Gallup and Coleman

(1990)

Chlorapatite, Ca5(PO4)3Cl 620 K P63=m ! P21=a Ferroelastic phase transition Bauer and Klee (1993)

Cryolite, Na3AlF6 820 K Immm ! P21=n Spearing et al. (1994);

Yang et al. (1993)

Langbeinite, K2Cd2 (SO4)3 P213 ! P212121 Transition temperature depends on composition,

with several possible substitutions of the Cd2þ cation

Boeriogoates et al.

(1990);

Percival (1990)

Natrite, (Gregoryite), Na2CO3 760 K P63=mmc ! C2=m Ferroelastic phase transition involving the softening

of the C44 elastic constant

Harris et al. (1993,

1995, 1996);

Swainson et al. (1995)
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Ilvaite, CaFe2Si2O2(OH) 346 K Pnam ! P21=a Phase transition driven by ordering of electrons on

the Fe sites

Ghazibayat et al.

(1992);

Ghose et al. (1989)

Sodalites Sodalites of different composition can undergo

displacive phase transitions, Al–Si ordering phase

transitions, and phase transitions involving orienta-

tional ordering of molecular ions in the large cavity

coupled to displacive distortions of the sodalite

framework

Depmeier (1988,

1992)

Brucite, Mg(OH)2 6–7 GPa Possible phase transition involving ordering of

the H atom

Catti et al. (1995);

Duffy et al. (1989a)

Garnets Several postulated cation-ordering phase transitions

based on different observed ordered structures

Hatch and Griffen

(1989)

Gillespite, BaFeSi4O10 1.8 GPa P4=ncc ! P21212 First-order phase transition, mostly displacive in

character but also involving some changes in

coordination

Redfern et al. (1993,

1997)

Ferrosilite, FeSO4 1.4–1.8 GPa C2=c ! P21=c Displacive phase transition. Similar transitions are

found in other pyroxenes

Hugh-Jones et al.

(1994); Shimobayashi

and Kitamura (1991)

Arcanite, K2SO4 860 K P63=mmc ! Pmcn Orientational ordering of SO4
22 anions Miyake et al. (1981)

Sanmartinite, ZnWO4–

scheelite, CuWO4

P2=c ! P�1 Jahn–Teller phase transition as a function of of

composition

Redfern et al., (1995);

Schofield et al., (1994)

Chiolite, Na5Al3F10 150 K P4=mnc ! P21=n Displacive phase transition Spearing et al., (1994)

Schultenite, PbHAsO4 313 K P2=c ! Pc Ordering of the hydrogen bond Wilson (1994)
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to ,50 GPa. The observed Hugoniot of the high-pressure phase is explained as due to

stishovite (see Graham, 1973).

Again, a quasi-stable phase with a higher free energy may survive because of

kinetic factors. The best-known example for such a case is offered by carbon, for which the

stable phase with minimum free energy is graphite and the metastable phase is diamond.

Therefore, “diamonds are not for ever”, but its change is so slow that it can hardly be

perceptible even over a million years!

Similarly, Si, on release of pressure from the metallic state, remains in a metastable

state, which has a volume intermediate between that of the normal semiconducting silicon

and the high-pressure metallic phase. The energy bands in silicon show the empty metallic

conduction band and the filled valence band, formed by hybridization of 3s and 3p

electrons.

5.10.2. Lattice disorder

Temperature may affect the transition by introducing disorder into the lattice, which

introduces a strong scattering of the conduction electron by the local lattice defects. Upon

melting when the disordering is large, the bands become so diffuse as to make the

transition from one phase to another continuous rather than discontinuous.

Lattice disorder introduces strong scattering of the conduction electron by local

lattice defects. For a given crystal structure and chemical composition, the relative

positions of the various electronic bands are determined mainly by the inter-atomic

distances. The temperature effect operates only via lattice disorder and excites photons

(which are indirect ones), causing blurring of the bands. This blurring is sufficient to

destroy the narrow gap existing between the valence and the conduction bands in

semiconductors.

5.10.3. Silicon: b-tin ! hcp

Computer modelling showed that the simple hexagonal phase of Si would be a

high-T superconductor, and this has later been confirmed by experiment (Erskine et al.,

1987). Silicon under pressure at 12 GPa shows a transition to b-tin structure, followed by a

simple hexagonal phase at 14 GPa. At still higher pressures, transitions to the hexagonal

close packed (hcp) and face centred cubic (fcc) take place.

5.10.4. Cation distribution and order–disorder

The transitions are structural phase transitions or isostructural transitions where the

valence state of the atom or the nature of the spin density wave state changes with pressure.

A crossing of crystal-field levels with pressure may even occur that can be presented using

an angular overlap model.

The minor cation substitutions that control the order–disorder variants in mantle

minerals are presented in Table 5.9.
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5.10.5. Incommensurate phases

Incommensurate phases occur in systems when competing periodicities of the two

lattices, such as basic and atomic, show misfits when packed together.

An incommensurate quantity is a periodic distortion of an otherwise regular lattice

(displacive incommensurability).

The incommensurate wave is made up of an amplitude wave (amplitudon) and a

phase wave ( phason). The spatially modulated electron density forms the charge-density

waves (CDW). The periodic distortion accompanying the CDW (due to interaction

between the conduction electron and the lattice) is responsible for the incommensurate

phase.

Incommensurate phases are commonly encountered in metal oxides, sulfides and

other materials where point defects (vacancies) order themselves, giving rise to

superstructures. Many insulating solids exhibit incommensurate phases. The phase

transitions generally occur in the order: normal ! incommensurate ! commensurate as

the temperature is lowered.

A modulated structure is described as a periodic or partly periodic perturbation of a

crystal structure with a repetition distance appreciably greater than the basic unit-cell

dimensions. For the incommensurate phase, a unit cell cannot be defined. No unit cell can

contain an exact period of both the wave and the underlying crystal structure.

Accompanying the phase transitions, anomalies in electrical resistivities of the

chalcogenides are observed.

5.10.6. Order of transition: first order and second order

First-order transition is associated with significant hysteresis. (Note: Hysteresis

effects are used to characterize the “order” of a transition.)

TABLE 5.9

Minor cation substitutions and order–disorder variants that might affect EOS of mantle minerals (compiled by

Hazen and Yang, 1999)

Mineral and composition Cation substitutions Order–disorder

Olivine (Mg,Fe)2SiO4 Ca, Fe3þ Mg–Fe

Wadsleyite (Mg,Fe)2SiO4 Fe3þ, H Mg–Fe

Spinel (Mg,Fe)2SiO4 Fe3þ, Ti Mg–Si

Pyrope (Mg3Al2Si3O12) Ca, Fe, MgSi–2Al Mg–Si; Ca–Mg

Majorite (Mg,Fe)SiO3 Ca, Al, Fe3þ Mg–Al–Fe3þ–Si; Ca–Mg

Clinopyroxene (Mg,Fe,Ca)SiO3 Na, K, Al, Fe3þ, Ti Mg–Al–Fe3þ–Ti–Si; Ca–K–Na

Orthopyroxene (Mg,Fe)SiO3 Ca, Al, Fe3þ Mg–Al–Fe3þ–Ca

Perovskite (Mg,Fe)SiO3 Ca, Al, Fe3þ Mg–Al–Fe3þ–Si

Anhydrous B (Mg,Fe)14Si5O24 Al, Fe3þ Mg–Fe2þ–Al–Fe3þ–Si

Magnesiowustite (Mg,Fe)O Fe3þ, vacancies Fe2þ–Fe3þ vacancies
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The Clausius–Clapeyron equation describes the thermodynamics at a first-order

transition:

dP

dT

DS

DV

DH

TDV

Second-order transition is associated with some disordering process. The ordering

parameter becomes unity for a perfect order while at perfect disorder it is zero. In second

order transition, DV and DS have zero values.

Landau’s theory provides the basis for second-order transitions. In second-order or

structural transitions, the symmetry of the crystal changes discontinuously. Second- and

higher-order transitions are often referred to as continuous transitions. In a second-order

transition, the soft-mode frequency is zero at Tc while, in a first-order transition, the change

of phase occurs before the mode frequency reaches zero.

5.10.7. Order parameters

Examples: For ferromagnetic to paramagnetic transition the order parameter is

magnetization.

For ferroelectrics such as BaTiO3, the order parameter is polarization.

For phase transition of SrTiO3, the order parameter is the angle of rotation of the

oxygen octahedra. In this transition, one of the optic modes of SrTiO3 exhibits softening

behaviour (i.e., soft modes). A soft-mode behaviour under pressure has been examined

by Samara (1984). It is known that not every phase transition is associated with a soft

mode. Phase transitions in some ferroelectrics may result from lattice dynamical

instability.

5.10.8. Superlattice ordering

Superlattice ordering of point defects has been found in metal halides, oxides,

sulfides and other systems.

5.10.9. Structural changes

On heating, CsCl will transform to NaCl structure, while a distorted perovskite

would transform to a cubic form. For the former, reconstructive transition (Buerger, 1951)

is invoked.

In displacive transition, only small changes in the arrangement of coordination

polyhedra occur.

Structural transitions can be ferrodistortive — with no change in the number of

formula units in the unit cell (e.g., ferroelectric materials) and anti-ferrodistortive — with

changes in the number of formula units in the unit cell (e.g., both ferroelectric and

anti-ferroelectric materials).
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5.10.10. Phase changes: principles and types

In high-pressure phase-transition studies, the structure of the heavier element

compounds at ambient conditions usually correspond very well to the high-pressure

polymorph of the lighter element compounds in the same group of the Periodic Table.

Isostructural compounds are different only in the types of cations. It is possible that

compounds having smaller cations require higher pressure to undertake the same type of

phase transition at the same temperature. In such cases, repulsion in a polyhedron

dominates over the transition.

A phase transition is called first order when the transition occurs with a

discontinuous change in the structure and entropy, and, hence a latent heat, at the transition

temperature. It is called second order where the structure of the low-temperature phase

merges continuously with that of the higher temperature phase at the phase transition, with

no discontinuous change in the entropy and hence no latent heat.

Displacive-phase transitions involve small motions of atoms to change the

symmetry of the crystal structure (see Fig. 5.16). For example, in the case of quartz,

cristobalite and leucite, the phase transitions involve small translations and rotations of the

Figure 5.16. Displacive phase transitions in minerals. In each case a is the low-temperature phase and b is the

high-temperature phase. In these the displacive phase transition occur as a result of rotations and translations of

the nearly rigid tetrahedra (Dove, 1997, q 1997 Mineralogical Society of America).
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(Si,Al)O4 tetrahedra (Fig. 5.16; Dove, 1997). In the case of displacive transitions, an

octahedra may rotate about the [001] axis (e.g., TiO6 in SrTiO3) while, in some, the

octahedra tilt by different amounts about all three axes (e.g., TiO6 and SiO6 octahedra in

CaTiO3 and MgSiO3, respectively).

5.10.10.1. Thermal transformations
The thermal transformations affecting a crystal are guided by the following

three rules:

Rule 1

The effect of temperature is scalar and the deformation of a crystal can be described by a

second-rank tensor.

Rule 2

Anharmonicity of thermal oscillations of atoms cause an increase in interatomic distance

affecting the thermal expansion. More anharmonic oscillations with higher amplitudes

(i.e., weaker bonds) manifest greater thermal expansion.

Rule 3

An increase in the thermal motion (vibrations, rotations and jumps) of atoms, etc., allows

an increase in the crystal symmetry through raising the vibrational symmetry of the atoms,

ultimately leading to more symmetrical high-temperature modification.

5.10.10.2. Soft modes
Each vibrational mode of a crystal structure is associated with a specific periodic

distortion of the structure. When a high-temperature symmetric phase is cooled, the

frequency of the “soft” mode decreases. When it becomes zero, the structure can hardly

continue with the distortion and transforms to a lower symmetry phase. The word “soft”

denotes crystal that yields to the displacements of atoms. Thus, in the high–low transition

of quartz, softening takes place in the normal lattice mode, occurring at 208 cm21 in the

high-temperature form. This soft mode is Raman active. (Note: In a zone-centre transition,

the lattice mode can be measured by Raman or IR spectroscopy, although symmetry-

dependent selection rules would define which modes are active or inactive.)

The soft-mode frequency reaches zero at the Brillouin zone boundary, at points

with the appearance of new reflections in the diffraction pattern of low-temperature form.

Soft modes may be optic modes or acoustic modes.

Crystal structure changes through mode softening can be evaluated by the change in

some order parameter (e.g., Q) as a function of temperature. In quartz, for example, the

order parameter is related to the tilting angle, h; of SiO4 tetrahedra while, in the perovskite

structure, it is the angle of rotation, w; of the octahedra.

5.10.10.3. Order parameter (h). Free energy and transition temperature
The free energy of the low-temperature phase can be written as a power series in the

order parameter h as (Dove, 1997):

GðhÞ ¼ G0 þ 1=2 Ah2 þ 1=4 Bh4 þ · · · ð5-88Þ
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where the parameters A and B are constants and G0 is the free energy of the system for

h ¼ 0 (Dove, 1993). Usually, GðhÞ is independent of the sign of h and, therefore, only

contains terms with even powers of h:
Equation (5-88) represents an expansion of the free energy about a maximum value

in the low-temperature phase and is, therefore, expected to be valid only for small values of

h; i.e., only close to the phase transition.

For the free energy of equation (5-88) to represent a phase transition, it is necessary

that the value of A changes sign at the transition temperature so that it is positive for

temperatures above the transition temperature Tc and negative for those below. The

simplest implementation of this condition is to assume that A ¼ aðT 2 TcÞ: It is also

assumed that we only need to consider the smallest number of terms in the expansion so

that we can rewrite equation (5-88) as

GðhÞ ¼ G0 þ 1=2 aðT 2 TcÞh2 þ 1=4bh4 ð5-88:1Þ

where a and bð¼ BÞ are positive constants. The equilibrium condition dG=dh ¼ 0 applied

to equation (5-88) leads to the predictions that h ¼ 0 for T . Tc; that there is a continuous

(second-order) phase transition at T ¼ Tc and that at, lower temperatures, h is non-zero

and has the temperature dependence:

h ¼ aðTc 2 TÞ
b

� 	1=2

ð5-89Þ

When the constant b is negative, the form of the free energy gives a discontinuous (first-

order) phase transition and the expansion of the free energy must be taken to a higher order

(see Dove, 1993, Appendix D). The order parameter can be described by the above

equation for temperatures down to 100–200 K, when the effects of the Third Law of

Thermodynamics becomes important. This relation holds good at temperatures below Tc

but, at very close to Tc; it takes the general form

h ¼ aðTc 2 TÞb ð5-90Þ

A term of the form PV could be added to the free energy, noting that the change in

volume at a phase transition usually scales as DV /21=h2: At increasing pressure, the

value of h2 at 0 K is likely to increase.

Since the electrons responsible for the JT effect are on the outside of the ions, they

interact strongly with the lattice, giving rise to structural-phase transitions (at high

temperature). The major products of electronic-phase transitions may be classed under:

(a) Ferromagnets. In these, long-range magnetic order below the Curie temperature

induces a spontaneous magnetization, Ms; resulting in many magnetic domains, each

with a Ms vector oriented in a direction different from that in adjacent domains.

(b) Ferroelectrics. These are characterized by different orientational states below Tc but

the spontaneous polarization is induced by cooperative crystallographic distortion.

In these, the domain boundaries can be controlled by an external field.

(c) Ferroelastics. In these, a cooperative crystal distortion induces a spontaneous strain

below Tc: The domain boundaries of a ferroelastic can be controlled by applied stress.
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5.10.10.4. Landau theory
Landau theory is effectively employed in describing the thermodynamics of phase

transitions (e.g., Salje, 1992). Odd terms in the Landau free energy force the phase

transition to be first order.

Ferromagnetic phase transition. Landau theory works well over a wide range of

temperatures for displacive-phase transitions such as ferromagnetic-phase transitions.

The mean-field theory of ferromagnetism predicts that the magnetization will vary as

lTc 2 Tl1=2
and the magnetic susceptibility will vary as lTc 2 Tl21; regardless of the

specific details of the magnetic ordering. Landau theory predicts identical behaviour.

For magnetic-phase transition at temperatures close to transition temperature, the

magnetization is found to vary as lTc 2 T lb with b < 0:38; and the susceptibility as

lTc 2 Tlg with g < 1:3:
Landau theory gives a good approximation to the free energy. The framework of

Landau theory can allow the relationship between different phase transitions in the same

material to be understood, such as when there is an Al–Si ordering-phase transition and a

displacive-phase transition. By employing Landau theory, many questions may be

answered by symmetry arguments. In Al–Si ordering-phase transition, the energy required

to form Al–O–Al linkages is quite large (,40 kJ mol21 or more; Dove et al., 1996) and

the cations only disorder in equilibrium at temperatures well above the melting points.

Strangely, there exists a wide range of ordering temperatures, even to low temperatures,

and there is also some mechanism that allows disordering for a phase transition to occur.

Ferroelastic transition. For ferroelastic phase transitions, one may consider only the

strain-order parameter coupling. This leads to re-normalized elastic constants, which

reflect the inverse susceptibility. In the pressure range where the orientation strain

ellipsoids remain invariant, the strain-order parameter coupling also remains invariant.

Such high-pressure phase transition can, therefore, be treated in the same Landau manner

as many high-temperature structural-phase transitions.

Ferroelectric-phase transition. In PbTiO3 perovskite, Pb2þ and Ti4þcations are off-

centre along [001] to generate a ferroelectric-phase transition. (Note: In a ferroelectric-

phase transition, small changes in the atomic positions generate a macroscopic dielectric

polarization.) BaTiO3 is well known for this ferroelectric-phase transition. In the high-

temperature cubic phase, the Ti4þ atoms are potential-energy maxima.

The potential-energy minima for the Ti4þ cations are located away from the central

site along the eight k111l directions. In the high-temperature phase, the Ti4þ cations hop

among the eight different sites. When the Ti4þ cations lie preferentially in the sites in the

positive c-direction, the ferroelectric-phase transition occurs. Still, four of these remain.

Therefore, on further cooling, there are subsequent phase transitions leading to all Ti4þ

cations occupying the same single site in the unit cell. Ferroelectric-phase transitions that

involve the ordering of a proton between the two sites on a double-well hydrogen bond,

such as in KH2PO4, are a further extreme example of this (e.g., Lines and Glass, 1977).
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Such transitions may be considered as displacive, with small atomic displacements,

or else as an order–disorder transformation. But in the displacive case, very little of the

entropy is configurational, whereas in the order–disorder case the entropy is mostly

configurational.

Displacive-phase transitions can be understood in terms of soft-mode theory, which

developed from a better understanding of lattice dynamics using inelastic neutron-

scattering techniques (Ghose, 1985, 1988).

The theory stands on the observation that, on cooling toward the transition

temperature, the frequency of the lattice vibration falls to zero. A vanishing frequency

implies a vanishing restoring force against the corresponding deformation. For this reason,

it is called a soft mode. The atomic displacements associated with the soft mode are the

same as the deformation of the structure in the low temperature.

Displacive transition: polymorphism. In displacive transition, the primary bonds in the

structure are distorted. Symmetry change occurs, usually between high- and low-

pressure/temperature forms (e.g., between high and low quartz at 5738C). In this transition,

as the temperature decreases, the high-symmetry structure becomes unstable relative to

some specific distortion. A displacive can be continuously monitored in terms of

temperature (or pressure) and bond angle. This transition is usually fast and involves only

small changes in energy. No change in translational symmetry occurs, i.e., the unit cell is

essentially the same for both the polymorphs. This is known as zone-centre transition.

Reconstructive transition

Olivine(a) ! spinel(g). In olivine structure, oxygen atoms constitute a hexagonal close-

packed array with Mg, Fe occupying half of the octahedral sites and Si occupying one-

eighth of the tetrahedral sites. The close-packed oxygen layers are parallel to (100). In

spinel structure, the oxygens are nearly close-packed cubic. Transition from olivine to

spinel does not call for a coordination change of cations but the linkages between the cation

polyhedra become more compact, which may account for the density increase by ,8%.

The volume reduction implies a reduction in the effective radius of oxygen.

The mechanism for olivine–spinel transformation may be martensitic in nature and

hence diffusionless. This involves the passage of partial dislocations on alternate close-

packed oxygen layers to convert the hexagonal close-packing of olivine to cubic close

packing in spinel. For this transformation, cation displacements (i.e., synchroshear) are

needed.

In the martensitic mechanism, close-packed layers in olivine and spinel are parallel,

i.e., the topotactic relation of (100)ol parallel to (111)sp holds.

b-Olivine ! spinel(g). The structural relation between b-(wadsleyite) phase and

g-(spinel) phase is such that one can be transformed to the other by the passage of

partial dislocations with Burgers vector equal to this glide operation. A glide-plane

displacement converts the existing glide to a mirror and vice versa. The stacking fault,

which thus results, shows a local structure of the other phase. Therefore, a stacking fault in
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a b-phase has the spinel structure. This is how stress-generated dislocations provide

nucleation sites for phase transformations to proceed.

b–g transition depth in a subducting slab: Plunging velocity. The nucleation and

growth mechanism in a subducting slab can be activated beyond the cut-off temperature of

,7008C. When the velocity of the downgoing slab is high, the overpressure will be high

and olivine becomes metastable. When the temperature goes beyond the cut-off

temperature, the rate of transition to spinel will be rapid enough to increase enormously

the change in free energy (i.e., DG), causing implosive transition. This energy release as

seismic waves causes the deep-focus earthquakes in downgoing slabs. The depth for

transition to occur decreases with decrease in plunging velocity. A greater subduction rate

means a greater depth at which the b–g transition will take place.

Driving forces for phase transition. There are two mechanisms for driving the phase

transition to occur. First, a force should exist to distort the structure locally and, secondly,

some interaction should exist to give a coupling between local ordering processes. The

operation of the forces can be illustrated with the cases of BaTiO3 and aluminosilicates.

In BaTiO3, the Ti4þ cation hops between sites of local potential energy minima that

give rise to the local distortions of the structure at low temperatures. The Ti4þ cations in

neighbouring unit cells interact and force each other to order in the same way.

Similarly, in many aluminosilicates, the large cavities formed by the framework of

linked SiO4 and AlO4 tetrahedra are occupied by cations such as Kþ and Ca2þ. In these

phase transitions, both displacement of the cations from the centres of the cavities and

collapse of the framework are involved. It is possible that the cations rattling around in

their cavities will like to order and also that some mechanism should develop for ordering

the cations in the neighbourhood as well. Coupling of these would bring forth the

transformation of the structure.

For displacive-phase transitions in silicates, there are two aspects for the driving

forces.

First, there is coupling between local ordering or deformation and the neighbouring

atoms that allows long-range ordering, described by parameter J in the standard paradigm.

In silicates, it arises from the stiffness of the tetrahedra that leads to a local deformation

propagating over large distances.

Second, there is a longer range force that drives the actual deformation, which is

described by the doubled-well potential VðhÞ; discussed in Section 5.10.10.6. below.

5.10.10.5. Landau order parameter
For a structural distortion, change in free energy is associated with the changes in

enthalpy and entropy. The latter two can be measured calorimetrically.

The variation in free energy can be related to the interaction energies between the

atoms. Again, the macroscopic properties such as strain, optical birefringence and site

occupancy change the thermodynamic properties.

The Landau order parameter, Q; is related to the change in some macroscopic

property through the phase transition. Change of order parameter with temperature

describes the thermodynamic process of the ensuing phase transition. For example, in the
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transition from tetragonal to orthorhombic structure, the optical indicatrix changes from

uniaxial to biaxial, while the change in birefringence (which is equivalent to the degree of

transformation) is directly proportional to Q; the order parameter. A discontinuity in the

change in Q is marked by the critical temperature, Tc; of the phase transition.

Strict symmetry rules define the form of order parameter in relation to the change in

symmetry. The correct form of the order parameter and its relationship to certain physical

properties for a given change in symmetry is available in standard tables. Usually, the

measured properties scale as Q or Q2:

5.10.10.6. Origin of doubled-well potential, V(h)
There are three contributors to the doubled-well potential, VðhÞ; in silicate phases

(Dove et al., 1995).

First, the long-range interactions, mostly arising from interactions between the

highly polarizable O atoms. These are attractive and tend to contract the structure to the

densest state possible, but the collapse is thwarted by short-range pepulsive interactions.

Second, the short-range interaction between a cation (e.g., Kþ or Ca2þ) occupying

a large cavity site and neighbouring O anions. However, a collapse of the cavity about the

cation may take place and the effect may propagate over large distance.

Third, the energy with the Si–O–Si (or Al–O–Al) bond angle, which is ideally

,458. Bond angles differing from this value will have a higher energy. For high-

temperature cristobalite, this angle enlarges to 1808 (Schmahl et al., 1992) and this is

associated with a disorder with neighbouring tetrahedra, which tend to rotate to reduce this

angle (Swainson and Dove, 1995). To have as many bonds as possible to lead to an ideal

bond angle, the structure should undergo displacive-phase transition. When the Si–O–Si

bond angle is near the ideal value (,458), the energy associated with this bond will oppose

phase transition or else phase transition will involve the rigid-unit mode (RUM) distortion

(of SiO4 tetrahedra) with the smallest distortion of the Si–O–Si bond angle (Dove et al.,

1995). RUM is discussed below.

5.10.10.7. Rigid-unit mode: “split atoms” and energy spectra
The existence of RUM in framework silicates is not trivial. Each tetrahedron has six

degrees of freedom ðFÞ: Each corner has three constraint equations that link it to the corner

of the connected tetrahedron, so the number of constraints per tetrahedron is also six. Thus,

the connected tetrahedra in a framework silicate, constrained with F ¼ C (total number of

constraints), should have no modes of deformation. Some computational methods have

been developed to determine all RUM for a given framework structure, taking account all

possible wave vectors (Hammonds et al., 1994).

Each tetrahedron is taken as a rigid body and atoms shared by two tetrahedra are

counted as two separate atoms, called “split atoms”. Any mode of deformation rotating or

translating the rigid tetrahedron may cause the split atoms to separate. This concept can be

incorporated into the formalism of molecular lattice dynamics (Dove, 1993, Chapter 6).

The RUM are then the vibrational modes calculated to have zero frequency. The number of

RUM in any structure is usually small (but greater than zero) compared with the total

number of wave vectors (Hammonds et al., 1996). On constraining tetrahedra as perfectly
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rigid holding no intertetrahedral forces, the RUM are the modes with zero frequency but, in

reality, the inter-tetrahedral forces will be non-zero and these will lead to an energy

spectrum for the RUM (e.g., in cristobalite, the RUM energies are of the order 0–1 THz;

Dove et al., 1995).). In the high-T phase of SiO2, the Si–O–Si bond angle is near to

the ideal value and a few rigid-unit mode (RUM) distortions do not involve change in

this angle.

5.10.11. Pressure-induced order–disorder

Effects of pressure on atomic order–disorder in crystalline phases have received

much attention because of their importance in geophysics, solid state physics and material

science (see Hazen and Navrotsky, 1996). Pressure-induced order–disorder phenomena

play a key role in the energetics, crystal chemistry and physical properties of solids such as

minerals, ferroelectic materials, alloys, fullerenes and high-temperature superconductors.

Order–disorder transition may alter crystal symmetry, causing changes in electrical and

thermal conductivity, vibrational spectra and elastic moduli. Systematic studies on atomic

order–disorder, compressibility and crystal chemistry of mineral phases are essential to

obtain more realistic EOS for mantle phases that exhibit ordering-dependent properties.

Cation order–disorder can significantly modify high-pressure behaviour. In

addition to structural and compositional factors, cation order–disorder also plays an

important role in determining the elastic properties of crystalline phases. Even the

properties of ferroelectrics and cuprate superconductors may be tuned by pressure. Cation

disorder can increase compressibility (Hazen and Yang, 1997).

Pressure-induced ordering is an unexpected phenomenon. Garnet group minerals,

which are cubic in structure, occur above 400 km. At higher pressures, they become

tetragonal through an ordering of the contents of the octahedral and dodecahedral sites

(Angel et al., 1989). Similarly, a large degree of ordering is seen in wadsleyite, b-(Mg,Fe)2

SiO4 (Finger et al., 1993). High-pressure cation ordering has been observed in olivine

(Aikawa et al., 1985), wadsleyite (Finger et al., 1993), garnets (Hazen et al., 1994) and in

anhydrous phase-B (Hazen et al., 1992). This aspect has been discussed in sections relating

to some of these minerals.

Hazen and Navrotsky (1996) reviewed the effects of pressure on order–disorder

reactions and demonstrated that many phases display a significant volume disordering:

DVdis ¼ Vdisordered 2 Vordered:

Silicates with Mg–Fe ordering commonly have DVdis up to 0.5%, while values

exceeding 2% obtain for some mixed-valence oxides and sulfides. Some (e.g., Liebermann

et al., 1977) used velocity–density systematics to infer that cation ordering affects spinel

elasticity. Cation ordering can also influence the EOS; e.g., the bulk modulus of

stoichiometric pseudo-brookite-type MgTi2O5 is seen to vary by 6%, depending on the

ordered state of Mg and Ti in two different octrahedral sites.

AB2O4 spinels ðFd3mÞ have two octahedrally coordinated cations for

each tetrahedrally coordinated cation. “Normal” spinels are fully ordered ([4]A[6]B2O4).
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For the intermediate form, ([4]A0.33B0.67) [6](A0.67B1.33)O, maximum disorder occurs on

both tetrahedral and octrahedral sites.

5.10.11.1. Fe–Mg ordering in silicates
Recent high-pressure studies of the phases appearing in the system MgO–FeO–

SiO2 including wadsleyite (Finger et al., 1993), anhydrous B (Hazen et al., 1992) and

olivine (Aikawa et al., 1985) have indicated that pressure may induce significant Mg–Fe

ordering. Pressure-induced ordering may play a significant role in cation distributions,

phase equilibria and element fractionations in the mantle. In orthopyroxene, ordering

may affect its elasticity (Bass and Weidner, 1984) and thermochemical properties

(Chatillon-Colinet et al., 1983).

The Fe–Mg order–disorder equilibria in pyroxenes and amphiboles can be used as

a powerful means to determine temperature–time paths of metamorphic and igneous rocks

on the Earth and the Moon. This principle can help the use of thermodynamic calibrations

of heterogeneous phase equilibria between co-existing minerals in xenoliths entrained

in basaltic and kimberlitic magmas and help to clarify the oxidation state of the Earth’s

upper mantle.

An extension of such a study can include the crystallographic controls of Fe3þ and

Fe2þ in lower-mantle phases and thus can allow modelling of the oxidation state of the

lower mantle. This would help to answer questions pertaining to the Earth’s early

evolution.

The degree of ordering of Mg and Fe between two octahedral sites, M1 and M2

(in olivine/orthopyroxene), is expressed by the distribution coefficient:

KD ¼ ðFeM1=MgM1Þ=ðFeM2=MgM2Þ:

Orthopyroxenes, having two very different octahedral sites, when allowed to

equilibrate at low temperature, order strongly. Fe orders into the more distorted M2-site,

while Mg prefers the smaller M1-site. KD values as large as 0.50 have been reported

for samples annealed at temperatures below 5008C, whereas samples heated to 1,0008C

and rapidly quenched typically have KD values between 0.2 and 0.3. Above 1,0008C,

most Mg-silicates manifest nearly complete disorder (Virgo and Hafner, 1969) (see

Section “Intra-crystalline Mg–Fe ordering” of Chapter 6).

A completely ordered mineral has a KD ¼ 1; whereas the completely disordered

one has KD ¼ 0: The KD values of some minerals are cited below as examples:

Minerals KD Reference

Olivine 1.8 Finger and Virgo, 1971

Wadsleyite 2.7 Finger et al., 1990

Grünerite 2.3 Finger, 1969

Fe–Mg distribution: three-component lower mantle. In the lower mantle, the atomic

proportions of Fe and Mg in the co-existing phases of perovskite and magnesiowüstite may

be discussed with reference to a simplified formula relationship as described below.
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Writing f ¼ Fe/(Fe þ Mg) in atomic ratio, with subscript 1 for perovskite and 2 for

magnesiowütite, the relations are found to be (Stacey and Isaak, 2000):

r1 ¼ 4104 ð1 þ 0:272f1 2 0:012f 2
1 Þ kg m23

r2 ¼ 3209 ð1 þ 0:701f2 2 0:061f 2
2 Þ kg m23

and

�r ¼ ð1 2 xÞr1 þ xr2

for a volume fraction x of magnesiowütite. The two molecular weights are m1 ¼
100:389 þ 31:542f1 and m2 ¼ 40:304 þ 31:542f2; so that

�f ¼ ½ð1 2 xÞr1 f1=m1 þ xr1 f2=m2�
½ð1 2 xÞr1=m1 þ xr2=m2�

ð5-91Þ

If the lower mantle is composed only of (Fe,Mg)SiO3 perovskite and (Fe,Mg)O

magnesiowütite, then the overall ratio is tightly constrained to 0.220 ^ 0.005

(independently of other assumptions). Arguments based on cosmic abundance and the

composition of meteorites, xenoliths and peridotites strongly suggest that �f is #0.11 for the

whole mantle (O’Neill and Palme, 1998). The apparent high value of �f ð¼ 0:22Þ for lower-

mantle mineralogy probably suggests the signature of CaSiO3 perovskite in the lower

mantle. Therefore, one must contemplate a three-component model for a more definitive

explanation of the results for the lower mantle.

5.10.11.2. Structural disordering and twinning
In crystals, four types of structural disorders involving atoms are encountered, as

discussed below.

(1) Substitutional disorder. This is the most common type of disorder seen in the mineral

kingdom, covering felspars, ferromagnesian silicates, spinels, carbonates, etc. This

disorder is also seen in non-stoichiometric crystals in which defects occur as missing

atoms (vacancies), e.g., wüstite Fe12xO and oxide superconductor YBa2Cu3O72x

(Hazen, 1990) or as interstitial excess O, as in La2NaO4þx (e.g., Chaillout et al.,

1989).

(2) Positional disorder. Static positional disorder, for example in albite (NaAlSi3O8), Na

atoms, occupy four distinct mean positions in different unit cells, depending on the

local arrangement of Al and Si (Winter et al., 1977). This contributes to the thermal

vibrational disorder.

(3) Rotational disorder. Rotation of CO3 groups along an axis is seen in rhombohedral

carbonates (Ferrario et al., 1994); molecular crystals such as H2 (Mao and Hemley

1994) and C60 (Fischer and Heiney, 1993) show rotational disorder under pressure.

(4) Distortional disorder. Quartz (a-SiO2) can distort from a high-symmetry form in

more than one equivalent way (Kihara, 1990); the perovskite-type structure also show

distortional disorder.
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Beyond a critical orientational disorder, a system evolves to an amorphous state.

This is consistent with the critical disorder model of amorphization proposed in the context

of ion implantation-induced amorphization (Riviere, 1977).

5.10.11.3. Free energy and order parameter (Q)
The free energy ðGÞ of a phase with a possible iso-symmetric transition has been

expressed by Christy (1994) in terms of an order parameter, Q; representing some

structural distortion as

G ¼ aQ þ bQ2 þ cQ3 þ dQ4 þ · · · ð5-92:1Þ

with an extensive variable such as temperature and or pressure. When some of the

coefficients in the above relation are changed, a phase transition could be introduced

between structures of the same symmetry but with distinct stable values of Q: Christy also

showed that such iso-symmetric transitions are necessarily first order and that when the

free energy varies with P and T; the transition line may terminate at a critical point in P–T

space. Around the extrapolation of the critical point in P–T space, a crossover region

should occur of very rapid change in order parameter. The crossover line is defined as the

locus of a minimum in d2G=dQ2 (where G ¼ free energy and Q ¼ order parameter).

However, when there are no thermodynamic discontinuities, there should be no

phase transition. However, in experiments, distinguishing a true crossover from a weak

first-order iso-symmetric phase transition often becomes difficult.

In the equation (5-92.1), Q is assumed to remain homogeneous (i.e., the structural

distortion remains constant in space) but when there is a mixing of two structural states

(in unit-cell scale), the free energy is lowered and the order parameter Q becomes

inhomogeneous. In two sublattices, Q may be denoted as Q1 and Q2; which, in a simple

expression for G; would be related as

G ¼ ð1=2Þ{aðQ1 þ Q2Þ þ bðQ2
1 þ Q2

2Þ þ cðQ3
1 þ Q3

2Þ þ dðQ4
1 þ Q4

2Þ}

þ ðl=2ÞðQ1 2 Q2Þ2 ð5-92:2Þ

The last term involves coupling between the two sublattices Q1 and Q2; higher order

coupling terms may be omitted. In a homogeneous case, Q1 ¼ Q2 and equation (5-92.1)

reduces to equation (5-92.2).

Equation (5-92.1) can be recast in terms of two variables, S and D; ½S ¼
ðQ1 þ Q2Þ=2 and D ¼ ðQ1 2 Q2Þ=2� as follows:

G ¼ aSþ bS2 þ cS3 þ dS4
� �

þ {ðb þ 2lÞD2 þ dD4} þ 3cD2Sþ 6dD2S2 ð5-93Þ

Evidently, the first term is equivalent to equation (5-92.2), representing the free energy of

the system if Q is homogeneous with the average value S: The second term is equivalent to

the Landau expansion for the free energy of a zone-boundary transition with order

parameter D; for which the symmetry rules allow only even powers in the order parameter.

The last terms are the symmetry-allowed linear-quadratic and bi-quadratic coupling terms

between the order parameters of the iso-symmetric and zone-boundary transitions.
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By equation (5-93), the stable structure predicted is governed by the sign of the

coefficient of D2: Again, if ðb þ 2lÞ , 0; then D ¼ 0 becomes a local maximum and the

minima are symmetrically placed on either side of D ¼ 0: Therefore, if b becomes more

negative at reduced temperature or pressure, the high-symmetry phase will undergo a

second-order transition to the cell-doubled structure. Depending on l; this equilibrium line

may intersect either the crossover in the high-symmetry phase or a segment of a first-order

iso-symmetric transition line.

Tricritical/first-order transition. Higher order terms in equation (5-93) may be involved

when one of the transitions from the low-symmetry to the high-symmetry phase are either

first-order or tricritical in the Landau sense. For example, in anorthite, the transition is

tricritical at room pressure (Redfern and Salje, 1987) whereas the transition at high

pressure is first order in character (Hackwell and Angel, 1993, 1995). The phase-diagram

topology may be characterized for the zone-boundary transition by an equilibrium line to

be near-isobaric at high pressure and near-isothermal at high temperature.

5.10.11.4. Order parameter (Q) and strain (1) in phase transition
When one tries to employ an extension of the Landau presentation of phase

transitions to conditions of high pressure, the problem arising relates to the excess volume.

When volume change is relatively small, a high-temperature phase transition normally

accompanies a volume strain (Carpenter, 1992) in proportion to the square of the order

parameter Q (i.e., V1 / Q2).

In a phase transition such as cristobalite I ! II, both the symmetry breaking

strain, 1sb (E representation, equation (5-30)) and the non-symmetry-breaking strain

(A1 representation, volume) are proportional to Q2 in the lowest order. This relation reflects

the dependence on the square of the macroscopic order parameter Q for the tetragonal to

monoclinic phase transition. Because the strain components change in proportion to each

other (with P and T), the overall spontaneous strain ellipsoid changes in size, although not

in orientation.

From different strain components, a total scalar spontaneous strain can be validly

calculated (because of the constant 1–Q coupling) as (Salje, 1990):

1tot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiX6

i¼1

12
i

vuut ð5-94Þ

where 1i are the components of the spontaneous strain tensor derived (see Section 5.4).

5.10.12. Isosymmetric transitions

In recent years, high-pressure, single-crystal diffraction experiments have attained

high precision, which has enabled the detection of a number of apparent phase transitions

(cross/across) at high pressures manifesting no detectable symmetry change. In this cross

through the phase transition, the space-group symmetry remains unchanged since the

atoms within the unit cell occupy the same Wyckoff sites before and after the transition.
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Such transitions have been termed “iso-symmetric” (e.g., Christy, 1995). This

phenomenon is obviously seen in amorphous systems and gas–liquid transitions. Such

iso-symmetric transitions have also been detected in some complex framework structures

(e.g., orthopyroxene, clinopyroxene, anorthite, etc.) showing large degrees of internal

structural freedom (Angel, 1996).

It is known that the free-energy changes associated with simple compression of a

single phase are far greater than those associated with cooling to low temperature.

Therefore, modest pressures can result in greater modifications to crystal structures and

properties than do temperatures and new transitions may occur (Angel, 1996).

Nevertheless, the displacive-phase transition characteristics in minerals at high

pressures often correspond fairly to high-temperature transitions. For example, the ferroic

transition at high temperature in ilvaite, CaFe3O8(OH), shows an order-parameter

behaviour which is similar to that obtained at high pressure (Finger and Hazen, 1987). In

co-elastic crystals (Salje, 1990), high pressures lead to an increase in elastic stiffness tensor

and a coupling between strain and the order parameter of the transition.

Potasium titanyl phosphate (KTP) undergoes strongly first-order (3% volume

change) iso-symmetric phase transition at ,5.7 GPa, as does sodium-doped KTP (Allen

and Nelmes, 1996). Such transitions are driven by significant changes in electronic

structure, as exemplified by the orthorhombic ! orthorhombic transition in (La,Ba)CuO4

(Paul et al., 1987) and in complex framework structures. A large number of internal

degrees of structural freedom are suppressed under pressure and some dynamic motion of

the larger cations leads to iso-symmetric transitions (e.g., in anorthite).

5.10.12.1. Energetics of iso-symmetric transition
The energetics of phase transition between the high-symmetry structures in terms of

an order-parameter approach show that the stability of the cell-doubled low symmetry of a

phase arises simply from the development of inhomogeneity in the order parameter.

Although the structural differences between the high-symmetry and low-symmetry phases

and between the two high-symmetry structures are quite minor, the thermodynamic

consequences of these changes can be quite significant. This is most clearly seen in the

intersection of the crossover line with the low-to-high-symmetry transition boundary in

anorthite (Hackwell and Angel, 1995). The high-pressure P�1 , I �1 transition (in anorthite)

is marked by the disappearance of the superlattice reflections (first-order transition).

On the phase diagram, the phase boundary is almost isobaric.

5.10.13. Growth rates

The growth rate during an interface-controlled reconstructive polymorphic phase

transition, involving diffusion across the inter-phase boundary, can be described by

(Carbon and Rosenfeld, 1981)

x0 ¼ K0T exp½2ðHp þ PVpÞ=RT �½1 2 expðDGr=RTÞ� ð5-95Þ

where K0 is a constant, T is absolute temperature, Hp is the activation enthalpy, Vp is

the activation volume for growth, DGr is the Gibb’s free energy change for reaction
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(must be negative) and R is the gas constant (Christian, 1975). The first exponential is a

kinetic factor describing the thermally activated diffusion of atoms across the inter-phase

boundary. The rate of this process increases rapidly with temperature but decreases with

increasing pressure, assuming that DV is positive. The second factor in brackets depends

on the thermodynamic driving potential in the system.

DGr can be approximated wherein DP is the overstep of pressure beyond

equilibrium and DV is the transformation-volume change at the conditions of reaction.

Hence, this factor is zero at equilibrium (where DGr ¼ 0) and, therefore, the growth rate is

zero. This factor approaches unity as DP increases.

For example, with increasing pressure at constant temperature, the growth rate of

spinel during transformation from olivine first increases (due to thermodynamic factors)

and then decreases (due to kinetic factors).

5.11. Charge distribution in ionic solids: valence and core states

In an ideal ionic solid, the valence charge is completely localized around an anion.

Deviations from complete localization, manifested by reduced ionicities or by definite

valence band-widths, indicate a measure of covalency in the bands. The distribution of the

theoretical valence charge is expected to provide a more direct qualitative picture of the

valency deduced from the band structure.

This can be illustrated with the example of MgO, as discussed by Bukowinski

(1980).

The valence and core charge densities within the Mg and O spheres, computed at

V0=V ¼ 1:0 (Figs. 5.17 and 5.18) show no more than 5% of the valence charge is located in

the Mg sphere; its shape is suggestive of overlap tails from the oxygen ions. An analysis

into spherical harmonics shows that the valence charge is primarily of p-like character on

Figure 5.17. Core and valence charge density of MgO in the Mg sphere at V0=V ¼ 1:0; a0 is the Bohr radius

(Bukowinski, 1980, q 1980 American Geophysical Union).
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both ions, with small amounts of other angular momenta induced by the crystal field. The

small amount of valence charge in the Mg sphere may be understood as a consequence of

the effective repulsion that arises from the orthogonalization of the valence states to the Mg

2p core states. Since the lowest empty states are at the bottom of the conduction band, the

exchange repulsion of the valence charge is very efficient. Further evidence of this is found

in the small effect that compression has on the amount of valence-charge overlap with the

Mg2þ ion.

The core states of Mg and O have small but finite amplitudes at the sphere radii,

indicating a certain amount of core–core overlap (Figs. 5.17 and 5.18). This is, of course,

one of the sources of the repulsive potential between the Mg and O ions and is the reason

why the O 2s and Mg 2p orbitals had to be treated as band states. In spite of this, the core

density in the Mg sphere is practically indistinguishable from that of the free Mg2þ ion.

Thus, in a first approximation, MgO could have valence electrons with the Mg2þ ions. The

true picture is somewhat more complicated because of the presence of angular momentum

components other than l ¼ 1 and because more than one electronic charge is distributed

outside the spheres. Thus, although the charge on the Mg ion is close to the nominal þ2,

the remaining charge is not entirely contained within the O sphere. Changing the radii has

some effect on the charge distribution but this cannot completely eliminate the charge

outside the spheres. With the model of equal touching spheres, the O and Mg core charge

densities are approximately equal at the point of contact. Changing the sphere radii would

transfer an unreasonable amount of core charge into the constant potential region. A model

which best describes the calculated charge distribution would consist of Mg2þ ions that

overlap with O cores that are of similar spatial extent. In addition, six valence electrons are

distributed throughout the unit cell in such a way that only about 80% of the valence charge

may be identified with the O site. This interpretation is in essential agreement with the

experimental charge density (Adams, 1978).

However, a more accurate treatment of many-body effects is not likely to change

the qualitative model presented above. Good agreement of the result of Bukowinski (1980)

Figure 5.18. Core and valence charge density of MgO in the O sphere at V0=V ¼ 1:0 (Bukowinski, 1980,

q 1980 American Geophysical Union).
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with the charge density obtained with the empirical pseudopotential method and the

measured charge density further supports this conclusion.

5.11.1. Ionic solid under compression: MgO

Compression should increase the valence charge density within the oxygen sphere,

while the total charge within the sphere would decrease. However, the apparent

incompressibility of the valence charge around the oxygen core may be a direct

consequence of the high-potential energy that results from accumulating so much excess

charge.

In the case of MgO, a high potential in the neighbourhood of the O core and the

strong repulsion of the Mg ion (due to the large band gap) explains the low polarizability of

MgO. The valence charge has virtually “no place to go”. Added to this is the fact that the

cores of O overlap with the Mg ion. These facts together account well for the large bulk

modulus observed in MgO. In MgO, there is a small concentration of valence charge

around r ¼ 0:5 Bohr radii from the Mg site (Bukownsiki, 1980). The valence charge is also

distributed throughout the whole unit cell and, in the neighbourhood of lattice sites, it

resembles the corresponding atomic-valence states. In MO language, the valence states

may be said to be composed of Mg 3s states and O 2p states (see Section 5.11).

Indeed, the computed electronic band structure and charge density coupled with

experimental data suggest that the MgO valence electrons are distributed throughout the

unit cell. This charge is possibly localized mostly with O ion, while an electronic charge is

distributed between the two atomic spheres of Mg and O. However, a small part of this

charge is localized near to the Mg site, where it mimics the Mg 3s state.

5.11.1.1. Band-gap change: implication in lower mantle

The band gap increases with pressure in the high-pressure regime of the Earth’s

mantle. Conduction band gaps play important roles in the thermal and electrical

conductivity of the mantle. As compression increases, MgO attains a higher transparency

to thermal radiation. At a temperature of a few thousand degrees, the thermal radiation

shows the peak energy to be an order of magnitude lower than the MgO band gap. Thus, at

the lower mantle, MgO should be a good conductor of radiative heat and a strong insulator

to electricity.

Such a change in properties with band-gap change is of tremendous significance

since the lower mantle is presumed to host a mixture of simple oxides, which would behave

the way of MgO. However, in many such oxides, the systematics and models developed

from zero-pressure data are likely to become unreliable when extrapolated to high

pressure. In particular, cation substitution and compression can result in a substantial

change in electron distribution around the neighbouring anion core. For example, the

presence of Fe2þ cation impurity will form intrinsic d-levels and compression to lower-

mantle densities will increase the overlap of the Fe2þ d-elections. Thus, as pressure

increases, the Mg-silicates tend to become increasingly transparent to thermal radiation.
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5.11.2. High-spin–low-spin transition

For transition-metal ions of d4 to d7 systems, high-spin and low-spin states are

possible. The high-spin state is usually stable in oxides and silicates at normal pressures,

except for the Co3þ ion. Since the ionic radius of the low-spin state is smaller than that of

the high-spin state, an increased pressure will enhance the low-spin state by spin-pairing.

The condition for HS ! LS transition under pressure is that DGðPÞ ¼ 0: Usually, a

contraction of the metal–ligand distance produces a large increase in the crystal-field

splitting.

In a crystalline field, the degeneracy of Fe2þ 3d orbitals is lost and in an octahedral

field they split into two sets of orbitals called t2g and eg: The difference between these two

is the crystal-field splitting (10 Dq, commonly designated as D), which increases with

decreasing Fe–O bond length, R: The ionic bonding model predicts the relation:

10 Dq / 1/R 5.

The six d electrons (each with spin quantum number S ¼ 1=2) of the Fe2þ cation

can couple to give states with spin S ¼ 2; 1 and 0. Because of exchange energy, both the t2g

and eg orbitals are split into spin-up ( " ) and spin-down ( # ) sub-orbitals. The difference

between these two sub-orbitals is expressed as Uex: Usually, Uex (for the t2g orbitals) ¼ Uex

(for the eg orbitals) but this is not always so. As can be seen in Fig. 5.19, the high-spin state

ðS ¼ 2Þ will be the most stable as long as Uex . 10 Dq. A decrease in Fe–O bond length

will increase 10 Dq and eventually Uex will be smaller than 10 Dq. Thus, the low-spin

ðS ¼ 0Þ state will be most stable. From a different point of view, as the Fe–O bond length

gets smaller, Uex will decrease because of greater Fe–O covalency.

5.11.2.1. Energy change in spin transition
The difference of the total energy in the crystal between the high- and low-spin

states is given by the change of the crystal-field stabilization and the spin-pairing energy

in the transition-metal ion (see Fig. 5.19). The total energy ðWÞ of the low-spin state is

given by

2WLSðVÞ ¼ WHSðVÞ þ SN½PðVÞ2 DðVÞ�

where S is the number of spin pairings (in octahedral coordination for d4 and d7 systems, it

is 1 and for d5 and d6 systems, it is 2), N is the number of transition-metal ions in a crystal

and P is the spin-pairing energy.

The high-spin state ð6A1gÞ at normal pressure has the crystal-field splitting, D

smaller than the spin-pairing energy, P: When D exceeds P at high pressures, the low-spin

state ð2T2gÞ becomes more stable than that of high-spin Fe3þ (r ¼ 0:645 Å). The volume

change associated with the spin transition can be evaluated as 13% from the plot of the

cell volume against the ionic radii systematics for the corundum structure sesquioxide (Fig.

3.10). This observed relationship is generally valid where both D and P depend on the

volume of the crystal.

In accordance with Griffith (1956), P can be written with Racah parameters for d4,

d5, d6 and d7 systems as 6B þ 5C; ð15=2ÞB þ 5C; ð5=2ÞB þ 4C; respectively. The spin-

pairing energy is proportional to the Racah parameter B; since the ratio B=C is almost
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constant (Tanabe and Sugano, 1954). The Racah parameter B describes the effects of

repulsion between electrons of a given ion. An increase in the degree of covalency between

a metal ion and its ligands by increased pressure would be accompanied by the spreading

out of the electron charge cloud and, therefore, reduction of the repulsion and the value of

B: For the volume dependence of D and P; the simple power-law formulae hold as

D ¼ D0ðr=r0Þ2m

P ¼ P0ðr=r0Þn;

where m and n characterize the volume dependence of the crystal-field splitting and spin-

pairing energies, respectively. In the case of Cr3þ in Al2O3, the value of n is estimated from

the pressure dependence of B as about 1.0 (Goto et al., 1979). For Fe3þ in Fe2O3, the values

of D0 and P0 are obtained as 21.86 and 4.07 £ 10212 erg, respectively (Lehmann, 1970).

In the case of Fe2þ in MgO, the value of m is estimated to be 3.0 from optical data at high

pressure (Sankland, 1968).

The EOS of low-spin form is derived by using the derivation of 2WLSðVÞ with

respect to V as

PLSðvÞ ¼
2dWLSðvÞ

dV
þ SN

dDv

dV
2

dPðvÞ
dV

� 	
ð5-96Þ

According to Ohnishi’s (1978) theory, the Birch–Murnaghan EOS adopted for high-spin

state is

PHSðVÞ ¼ ð3=2Þ½ðV=V0Þ27=3 2 ðV=V0Þ25=3�K0x{1 þ ð3=4ÞðK 0
0 2 4Þ½ðV=V0Þ22=3 2 1�}

Internal energy change. The free energy of HS ! LS transition at constant T and P is

DG ¼ DU 2 TDS þ PDV

DU: The change in internal energy DU for HS ! LS transition is simply the energy

difference between 5T2g and 1A1g states of Fe2þ cations (5T2g is the spectroscopic state

Figure 5.19. Schematic of occupancies of states (a) high-spin and (b) low-spin ferrous iron (Courtesy:

R.E. Cohen).
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resulting from the high-spin ðt2gÞ4ðegÞ2 configuration and 1A1g is the spectroscopic state

arising from the ðt1gÞ6 configuration). From spectroscopic measurements or electronic

structure calculations, the energy difference can be estimated.

The 5T2g !
1 A1g electronic transition is spin-forbidden so no absorption band is

expected in Fe(II) oxides and silicates. But the energy difference ðDEÞ between the 5T2g

and 1A1g states of Fe2þ, as calculated from ligand field theory, is

DE : ð5T2g 2
1A1gÞ ¼ 5B þ 8C 2 20 Dq:

where B and C are the Racah parameters describing the interelectronic exchange and

repulsion energy. However, the B and C Racah parameters for Fe2þ in oxides and silicates

are not well known. The free ion value of B is 1,058 cm21 (Lever, 1968) but for solids it

should be less by a factor b; the nephelauxetic ratio. That is

BðsolidÞ ¼ bB ðfree ionÞ:

For divalent transition-metal ions, b for oxides and silicates is about 0.9. In a free

ion C ¼ 3:7B and B ¼ 1,058 cm21. Taking all values together, 5B þ 8C becomes

32,950 cm21.

The optical absorption spectral band of Fe2þ in regular octahedral coordination

in oxides and silicates gives the value of 10 Dq. However, due to the dynamic JT effect,

the line may split. For example, in (Mg, Fe)O, the 5T2g !
5 Eg transition is split into bands

at 11,600 and 10,000 cm21. Therefore, 10 Dq is either 11,600 or 10,000 cm21. When the

dynamic JT effect is small, a single band occurs at 11,000 cm21(Mao and Bell, 1972).

For Fe2SiO4 spinel, 10 Dq equals 11,000 cm21 at R(Fe–O) ¼ 2.16 Å. Therefore,

the HS–LS transition energy, DU; is calculated as 10,950 cm21 at R (Fe–O) ¼ 2.16 Å.

How the DU energy will change with R (Fe–O) is estimated by assuming 10Dq0/10Dq ¼

(R/R0)5. The resulting values for DU as a function of R (Fe–O) are given in Table 5.10

below.

TABLE 5.10

Internal energy estimated from HS ! LS transition in octahedral Fe2þ

R(Fe–O) (Å)

2.16 2.05 1.95 1.85

Estimates from ligand-field theory (cm21)a

10 Dq 11,000 14,300 18,300 23,900

DU 10,950 4,346 23,654 214,850

Estimates from SCF–Xa–SW MO calculation (cm21)a

10 Dq 11,130 14,826 18,040 23,520

DU 10,760 3,243 25,241 216,210

Note: 10,000 cm21 ¼ 119.6 kJ/mol, and 1 eV ¼ 8,066 cm21. DU can also be estimated from first-principles

electronic structure calculations.
aCalculated using b ¼ 0:9; B ¼ 1,058 cm21, C ¼ 3:7B:
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The electronic structure of an (FeO6)102 cluster as a function of Fe–O bond length

can be calculated using the self-consistent field Xa-scattered wave (SCF-Xa-SW) method.

The theory behind the SCF-Xa-SW method is given by Johnson (1973) and Slater (1974).

The molecular orbital diagram for an (FeO6)102 cluster with an Fe–O bond length

of 2.16 Å is shown in (Fig. 5.20). The calculations were carried out using a spin-

unrestricted formalism that takes into account the different exchange potentials for spin-up

ðaÞ and spin-down ðbÞ electrons. Using the “transition-state” formalism (Slater, 1974), the

energy of the HS ! LS transition was calculated for (FeO6)102 clusters with decreasing

Fe–O bond lengths. The 5T2g !
1A1g energy is given by 2½1ðtb2gÞ2 1ðeag Þ�; where 1ðtb2gÞ and

1ðeag Þ are the t
b
2g and eag one-electron orbital energies in the configuration ðta2gÞ3ðtb2gÞðeag Þ

1:
The results are in good agreement with the rough estimates obtained by using

ligand-field theory. Fitting the SCF–Xa–SW calculated energies to the ligand-field

Figure 5.20. Self-consistent field X1– SW molecular orbital diagram for an (FeO6)102 cluster at

R(Fe–O) ¼ 2.16 Å. Orbitals indicated by dashed lines are unoccupied.
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relation gives

DU ¼ 5B þ 8C 2 20 Dq0ðR0=RÞ5

given 5B þ 8C ¼ 33,370 cm21 and 10 Dq0 ¼ 11,480 cm21 with R0 ¼ 2:16 Å. The SCF–

Xa–SW calculated value for 5B þ 8C decreases by about 10% when the Fe–O bond

length is decreased from 2.16 to 1.85 Å. Also, the value for 10 Dq closely follows the
10Dq0=10Dq ¼ ðR=R0Þ5 dependence.

5.11.2.2. Spin-pairing in the lower mantle
In the lower mantle, low-spin Fe2þ ions are likely to exist, as has been

experimentally determined on a host of oxide phases by pressures overlapping those

present in the lower mantle. Molecular orbital calculations (Tossel, 1976) also indicated

that high-spin to low-spin transition could take place in Fe2þ in FeO in this mantle region

(Sherman, 1988). MO calculations also showed that, at depths greater than 1,700 km, Fe2þ

in magnesiowüstite would largely exist in low-spin state (Sherman, 1991). Low-spin Fe2þ

ions may also exist in the perovskite structures in the lower mantle (Williams et al., 1989).

However, above the spin-pairing transition point, low-spin Fe2þ may have a smaller

ionic radius than Mg2þ; this possibly would lead to a reversal of melting-point

relationships. This change to low-spin configuration of Fe2þ would affect the magnetic

properties of the lower mantle.

In the lower mantle, the transition of (Mg, Fe)O from B1(NaCl) to B2(CsCl) takes

place along with the change in electronic structure of Fe2þ in silicate perovskite. In both

the phases, Fe2þ occupy eight-coordinated sites. The change in internal energy, DU; for

the HS ! LS transition of 8-fold coordinated Fe2þ(the 5Eg !
3 T1g), is estimated from

ligand-field theory as

D ¼ 210 Dq þ 6B þ 5

calculating the difference between 5Eg !
3 T1g states. The calculated HS ! LS transition

energy for 8-fold coordinated Fe2þ as a function of the Fe–O bond length is given in

Table 5.11.

The table indicates that any iron that is partitioned into the silicate perovskite

phase will always be in the high-spin state, assuming that Fe2þ cations occupy only the 8 to

12-fold coordination sites. The calculations presented earlier suggest that the majority of

Fe2þ cations in (Fe,Mg)O will not be in the low-spin state until a depth greater than

1,700 km is reached (see Fig. 5.21).

Magnesiowüstite (Mg, Fe)O and silicate perovskite (Mg, Fe)SiO3 phases dominate

in the lower mantle, where the ambient pressure is sufficient to effect a high-spin ðS ¼ 2Þ to

low-spin ðS ¼ 0Þ transition.

Band broadening. Under pressure, the collapse of the high-spin magnetic state is caused

by the band broadening due to shorter nearest-neighbour distances, not by an increase in

the crystal-field splitting. The change in bond character from ionic to metallic would affect

the mineral stability. As the charge moves out of the bond direction, the shapes of the
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transition-metal ions and oxygen ions would change. This will affect the phase diagrams

and elasticity.

Under high pressure transition-metal elements lose their properties and behave as

different elements and the chemical behaviour drastically changes when the valence and

other bonding electronic behaviour lose their significance in bonding.

5.11.3. Pressure dissolution and substitution

Dissolution of pyroxene in garnet has very little effect on thermal expansion but

substitution of iron and magnesium in the pyrope–almandine join seems to have a large

effect.

When d0 is calculated, using the ðdK=dTÞP values as reported by Soga (1967), its

values become 5.3 for pyrope and 6.4 for almandine. For the pyroxene — garnet solid

TABLE 5.11

HS ! LS energy (in cm21) for 8-fold coordinated Fe2þ

R(Fe–O) (Å)

2.30 2.16 1.95 1.85

10 Dq cm21 7.143 10.476 11.528 14.731

DU (cm21) 16,186 12,853 11,801 8,598

All calculated by using B ¼ 1,058 cm21, C ¼ 3:7B and b ¼ 0:9:

Figure 5.21. Calculated PT-curve for the high-spin to low-spin transition of FeO. Also shown is an approx.

mantle geotherm (assumed adiabat). The HS ! LS PT-curve crosses the mantle geotherm near 1700 km depths.
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solution — it is observed (Yagi et al., 1987) that, with increasing pyroxene component, the

bulk modulus seems to decrease and also that the thermal expansion of majorite is

expected to be similar to that of garnet with the same Fe/Mg ratio.

5.12. Amorphization

Materials lacking translational or orientational long-range order are called

amorphous phases. Although configurational disorder leading to excess entropy should

render amorphous phases greater stability than ordered ones, this is not observed to be

so. This is because, at temperature much below the melting temperature, the increase

in entropy causes lowering of Gibbs free energy. This energy is, however, lower than

the increase in the internal energy necessary for destroying long-range order by

distortion.

Thus, at high temperature, the entropy term predominates up to the melting

temperature and internal energy becomes less significant in determining the structural state

of the material. Crystalline material with artificially created defects would transform to

amorphous phase, thereby lowering its free energy. A common example is the

amorphization or glass formation by radiation. In such a situation, the melting curve

shows a downward trend with pressure. This pressure-induced amorphization (PIA) is

termed “pseudo-melting”.

Meteorite craters offer impact melted rock glass, called “diaplectic glasses”. These

contain dense pressure phases as stishovite or hollandite, formed at the high-pressure

regimes in the Hugoniot curve.

High-pressure studies are critical for identifying new equilibria and metastable

states that can be accessed as amorphous materials and compressed to smaller volumes.

Recent studies of inorganic liquids and glasses under compression documented changes in

nearest-neighbour geometry and vibrational spectra (Hemley et al., 1986; Williams and

Jeanloz, 1988; Durben and Wolf, 1990). Just as crystalline compounds are modified by the

high-pressure phase transitions, so the amorphous materials undergo structural transitions

under pressure. In recent years, the intermediate-range order observed in amorphous

materials has drawn considerable attention (Gaskell et al., 1991).

Studies on PIA have demonstrated that, at higher densities, potential energy dictates

structures, not the entropy. At higher pressure, internal energy dominates, not entropy, and

entropy does not favour the state. Unlike amorphization, through thermal quenching the

kinetic processes are inhibited in a PIA.

5.12.1. Pressure-induced amorphization

A large number of materials which exhibit amorphization when subjected to

static or dynamic high pressures have been investigated. The pressure-amorphized

materials are now termed as “glass without fusion”. In shock compression, the fusion

and glassy structure may be a consequence of the high temperature and strain rates

associated with it. However, an examination of the short- and medium-range order in
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some of the pressure-amorphized materials suggests that these could be structurally

different from the glasses obtained from quenching the melts. In this context, Raman

spectroscopy has been extremely useful in providing insight into the evolution of

disorders in the preceding crystalline phase. The residual short-range order in the

amorphous state has also been deeply probed. It is found that the distribution of bond

lengths and bond angles in the pressure-amorphized-state is narrower than those known

in melt/quenched glasses.

The crystalline to amorphous transformation (c ! a) opens up the question of

clarifying (a) the relationship between these pressure-induced amorphous phases and

the conventional glasses quenched from high-temperature melts and (b) the unusual

mechanical processes that have been documented during metastable transitions in hydrous

silicates. The latter may play an important role in generating deep-focus earthquakes in

subduction zones (Meade and Jeanloz, 1991).

The pressure-amorphized state is metastable and is believed to be resulting from the

kinetic hindrance of equilibrium-phase transitions. Slow kinetics associated with the

molecular reorientation and translation across a phase transition leaves the system trapped

in the metastable amorphous state. Directional bonds and non-hydrostaticity are some of

the important factors that determine the amorphization pressure. The residual order in the

pressure-amorphized materials is quantitatively different from quenched glasses. The

existence of inhomogenous disorder in potash alum supports the applicability of a critical

disorder model of amorphization. PIA was first observed in ice (Mishima et al., 1984).

Sharma and Sikka (1996), however, suggest that this phenomenon may have been known

earlier. Conversely, amorphization of crystalline phases stable at high pressure may occur

on decompression. Liu and Ringwood (1975) showed that the cubic CaSiO3 perovskite,

which is stable at high pressure (,16 GPa), transforms to an amorphous phase during

decompression.

Since the first report on ice (Mishima et al., 1984), a number of compounds have

been found to exhibit amorphization at high pressure with widely different bonding

natures, such as covalent SiO2 (Hemley et al., 1988) and AIPO4 (Kruger and Jeanloz;

1990), ionic LiKSO4 (Arora and Sakuntala, 1992) and Ca(OH)2 (Kruger et al., 1989),

van der Waals SnI4 (Sugai; 1985). PIA features have been observed in quartz-type forms of

GeO2 and AlPO4, and also in framework silicates, pyroxenes, olivines and hydrous

silicates.

Amorphization is brought about by different mechanism in different materials. For

example, in quartz (SiO2), the breaking of Si–O bonds due to bending of the Si–O–Si

angles beyond their energetic limit has been proposed as the cause for PIA (Hazen et al.,

1989). Dimerization of the tetrahedral molecules is believed to be the cause of PIA in SnI4,

whereas orientational disorder of sulphate ions is identified as reponsible for

amorphization in a number of binary sulphates.

PIA has been reviewed by Richet and Gillet (1997) with reference to differential

stress, crystalline transformations, compression mechanisms and shearing processes. They

also discussed the thermodynamics of amorphization and mechanistic interpretations, with

special reference to elastic and dynamic instabilities and shearing processes.
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5.12.1.1. Metastability and reversible amorphization

A phase, while transforming from one crystalline state (c) to another crystalline

state (c0) may get trapped in an intermediate metastable amorphous state (a) due to slow

kinetics of c–c0 transition. Further pressurization may accelerate the a–c0 transition (see

Fig. 5.22). As an example, high-density amorphous ice is seen to transform to crystalline

ice VII when further pressurized to 4 GPa (Hemley et al., 1989).

Amorphization may be reversible or irreversible. Reversible transition with

significant hysteresis is seen in cases of compounds having a dissimilar type of

bonding among different groups of atoms such as FeSiO4, AlPO4, Ca(OH)2, LiKSO4,

SnI4, etc. Irreversible amorphization is seen in the cases of ice, quartz and

Ca2Al2Si2O8 (Williams and Jeanloz, 1989). Examples of monatomic phases with

directional bonds showing PIA are graphite (Goncharov et al., 1992) and sulphur (Luo

and Rouff, 1993).

5.12.1.2. Non-hydrostatic pressure and amorphization

The presence of non-hydrostatic pressure also appears to have a role in driving the

PIA. Freezing of the most commonly employed pressure-transmitting media such as

methanol : ethanol (1 : 4) mixture at 11 GPa in a gasketted diamond-anvil cell leads to the

development of a non-hydrostatic component of pressure in the cell. Hence, in some

systems exhibiting PIA above 11 GPa, a non-hydrostatic pressure may be responsible.

Under non-hydrostatic conditions, the Raman lines broaden much more rapidly and the

amorphization pressure is lowered. The non-hydrostatic condition leads to shear stress and

asymmetrical distortion of the molecular units. These accelerate the growth of disorder and

thus effectively lower the pressure of amorphization. Lowering of amorphization pressure

from 23 to 14 GPa is reported in graphite when no pressure-transmitting medium is used

(Goncharov, 1992). A similar observation has been made with sulphur (Luo and Ruoff,

1993).

Figure 5.22. A schematic three level diagram for c ! a, and a ! c0 transformations.

(Crystalline) Materials Under High Pressure 507



5.12.2. Disordering and amorphization: Raman scattering

In the process of amorphization, the bond length and bond angle show a distribution

other than being unique. As the amorphous phase lacks periodicity, the disappearance of

lattice or the external vibrational modes in the Raman spectra is used to identify the PIA

transition (Deb et al., 1993). The basic signature of amorphization by loss of long-range

order in Raman spectrum lies in the vanishing of the external vibrational modes through

the breakdown of the q < 0 selection rule. This results in manifesting the DOS through the

second-order Raman scattering. This provides complementary information on the disorder

in relatively more rigid units in the structure. However, it should be noted that vanishing or

broadening of these modes may not necessarily correlate with the loss of long-range order.

The disorder is manifested in the broadening of the internal modes of the strongly

bound polyatomic groups or molecular ions. An increase by a factor of ,5 in the width of

Raman lines (Klug et al., 1986) or of infrared absorption (Kruger et al., 1989), associated

with the internal modes, is observed across PIA.

Investigation of a number of binary sulphates shows that the high-pressure

crystalline phases have disorder which is in the form of distinct orientations of sulphate

ions. This results in the splitting of the non-degenerate symmetric stretching mode of the

sulphate ions as seen in the Raman spectra (Arora and Sakuntala, 1992). Growth of these

disorders eventually leads to amorphization. Raman spectra arising from the polyatomic

units such as sulphate ions correspond to that of the bond lengths and bond angles.

It should, in principle, be possible to obtain information about such short-range order

from the analysis of the spectra.

5.12.2.1. Non-bonded atoms and steric hindrances

PIA can also be brought about by the structural frustration caused by kinetic

impedance and steric hindrances (Sharma and Sikka, 1996). The steric constraints arise

due to the reduction of non-bonded inter-atomic distances under pressure, when a

significant modification of the molecular shapes is kinetically inaccessible. A general

correlation is noted between the pressures of phase transformations and the limiting

distances of non-bonded atoms. This happens when the repulsive energy cost for further

squeezing those non-bonded atoms far exceeds the energy cost of the distortion

of polyhedra. This leads to a phase transition to relieve the steric strain in the structure

(Sikka et al., 1994).

For AlPO4, the relevant non-bonded distances are for the non-bonded O· · ·O atoms.

For these, the largest steric limit is Pauling’s van der Waals separation of 2.8 Å, and the

smallest extreme limiting value is 2.6 Å. But a phase transition is not generally initiated at

the van der Waals limiting distance. The O· · ·O distances decrease with pressure and,

between ,10 and 15 GPa, these reach a plateau value of ,3 Å (corresponding to the range

where c/a ratio shows a plateau). At 29 GPa, there occurs a few O· · ·O contacts which are

,2.58 Å, i.e., approaching the limit of 2.6 Å, at which distance the nucleation of the

disordered phase occurs.
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5.12.2.2. Memory glass: AlPO4

The most common mineral known to manifest PIA is quartz, which, when subjected

to a pressure of ,15–30 GPa at ambient temperature, undergoes slow amorphization.

Kingma et al. (1993), however, have observed a new phase preceeding amorphization. An

isostructural mineral, berlinite (AlPO4), similarly shows PIA at ,20 GPa. This mineral,

however, behaves as a memory glass’ (e.g., Kruger and Jeanloz, 1990; Chaplot and Sikka,

1993; Polian et al., 1993).

A memory glass would recrystallize to the original crystallographic state upon

release of pressure (i.e., quenching). Since the pioneering work of Kruger and Jeanloz

(1990), this property has been noted in several materials iso-structural with quartz.

To investigate the mechanism of memory effect in berlinite, Tse and Klug (1992)

and Chaplot and Sikka (1993) used inter-atomic potentials to perform molecular dynamics.

They showed that the O–P–O bond-angle distribution remains close to the original in

quartz structure and the PO4 tetrahedra remain four-coordinated even when severely

distorted. All these perform the observed memory behaviour. Some, however, noted it as

polymorphic crystal–crystal phase transition (Gillet et al., 1995).

The crystallographic characters and changes under pressure of berlinite were

earlier discussed under Section “Side-band fluorescence ultrasonic technique” of

Chapter 4.

5.12.3. Solid–liquid (melt) stability boundary

The thermodynamic solid–liquid (melt) stability boundary is determined by the

equality of free energies of the two phases. The mechanical stability of a crystal can be

deciphered from the calculation of elastic constants at several pressures and temperatures.

At a given temperature, the maximum pressure of stability is determined via the Born

stability criteria. Mechanical instability occurs when a combination of elastic constants

violates one of the Born stability conditions (see Born and Huang, 1956).

In a semi-empirical approach, the quasi-harmonic lattice dynamics may be

combined with the Lindemann criterion for melting to compute a thermodynamic melting

line. The mechanical instability line due to the violation of the Born stability condition

C11 2 lC12l . 0 (see Born and Huang, 1956) and the theoretical thermodynamic curves

are compared with experiment. The temperature where mechanical instability occurs is

mostly higher than the thermodynamic melting point.

In a molecular dynamics study a mechanical instability due to the softening of the

elastic modulus C66 ð¼ C11 2 C12Þ of ice structure under high pressure has been proposed

by Tse (1992).

5.12.3.1. Law of melting: Lindemann
The law of melting in its differential form is

d lnTm=d lnr ¼ 2ðg2 1=3Þ ð5-97aÞ

where Tm is the melting temperature, r is the density and g is the Grüneissen parameter.
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The relation relies on the postulation that, on melting, the long-range order of the solid

state breaks down.

Lindemann theory offers the slope of the temperature of melting ðTmÞ with pressure

as

dTm

dP
¼ 2Tm

KT

g2
1

3


 �
ð5-97bÞ

where g is the Grüneisen parameter at a particular V and KT is the isothermal bulk modulus

at the T and V of the triple point. Again, g ¼ aCKTV=CV; where aV is the volume

coefficient of thermal expansion and CV is the specifics heat at constant volume.

Equation (5-97a), known as the Lindemann theory of melting, can be related to g as

g ¼ d ln Tm

ln r


 �
ð5-98Þ

For melting relationships, equation (5-97a) or (5-98) seems to hold good in many cases.

TmðPÞ can be determined by first calculating PðVÞ and TmðVÞ: The thermal EOS

appropriate to temperatures above Tm0 (where Tm0 is the temperature of melting at ambient

pressure) is

PðV ; TÞ ¼ PðV; Tm0Þ þ Pth ð5-99Þ

where the thermal pressure Pth is evaluated for T . Tm0 along the melting curve.

The variation of g with volume along the liquids is assumed to be

gðrÞ
gðr0Þ


 �
¼ V

V0


 �q

ð5-100Þ

The values of g0 (at P ¼ 0) of iron phases are presented by Anderson and Isaak (2000).

The melting temperature equation is obtained by substituting equation (5-98) in

equation (5-97b) and integrating (Anderson, 1995, p. 286) so that

Tm

Tm0

¼ V

V0


 �2=3

exp
2g0

q
1 2

V

V
0


 �q� 	� �
ð5-101Þ

where Tm0 is the melting temperature at the beginning volume, V0 at P ¼ 0:
In some of the melting experiments, particularly those involving shock loading, the

sample may not remain in the initial phase or in the single phase before melting. Often,

decomposition or transition to another phase may precede the melting depending on the

experimental conditions. This would also influence the observed melting temperature.

Lower melting temperatures observed in an experiment may be largely accounted for by

the level of defects. The true level of defects in a real sample in experiments could be much

higher, depending on the sample history.

Mechanical melting is a consequence of the softening of elastic moduli.
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Activation volume and melting temperature. The activation enthalpy Hp as a function of

the melting temperature Tm (at 1 bar) can be expressed as

Hp ¼ aTm

where a is a constant. This relationship seems approximately valid for thermally activated

processes such as diffusion for similar structure but different composition (Frost and

Ashby, 1982). Therefore, by incorporating the melting temperature Tm; the relation

becomes

x0 ¼ K0T exp½2ðaTm þ PVpÞ=RT� £ ½1 2 expðDGr=RTÞ� ð5-102Þ

The activation volume Vp can also be related empirically to Tm (Poirier, 1985) for

processes such as lattice diffusion and creep. However, the activation volume for a grain-

boundary diffusion process (for example, the growth of spinel in olivine) will differ from

the activation volume for lattice diffusion. Therefore, its relationship to Tm is not clear.

There are at present no estimates for the activation volume of diffusion across inter-phase

boundaries in minerals and there are no reliable models for the pressure dependence of this

process. However, the activation volume Vp has been noted to decrease significantly with

pressure increase (Kirby et al., 1996).
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