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Abstract 

 A compilation of Fe3+-bearing chlorite analyses is used 1) to investigate the Al-free di-

trioctahedral (AFDT) substitution 2Fe3+ +  = 3(Mg,Fe2+) in chlorite and 2) to estimate the 

composition of a ferri-sudoite end-member (Si3Al) [(Fe2+,Mg)2 Fe3+
2  Al) O10(OH)8 within the 

chlorite solid-solution domain. According to our observations, up to two Fe3+ cations might be 

allocated in the M2-M3 chlorite sites by the substitution AFDT, which does not involve Al. 

These unexpected observations were made possible by the development of µXANES techniques 

allowing in-situ measurements of XFe3+ (Fe3+/(Fe2++Fe3+)) in heterogeneous chlorite. Although, 

further studies are required to confirm the crystallographic position of Fe3+ and refine its 

ionic/magnetic behaviour in chlorite, it opens perspectives for developing new geothermometers. 

 

 Introduction 
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 Chlorite is an ubiquitous phyllosilicate composed of tetrahedral and octahedral layers 

according to the 14.2 Å 2:1:1 arrangement (e.g., Meunier, 2005). The tetrahedral sheet hosts tri- 

or tetravalent cations (Si4+, Al3+ or rarely Ti4+, Fe3+), while the octahedral one is composed of di- 

or trivalent cations (usually Fe2+, Mg2+, Mn2+, Al3+ and Fe3+). The general formula of chlorite is: 

R2+
6-x-3yR

3+
x+2yy (Si4-xR

3+
x) O10 (OH)8, in which R2+ represents divalent cations, R3+ trivalent 

cations and  octahedral vacancies (e.g., Wiewiora and Weiss, 1990). According to Bailey 

(1988), the chlorite structure is formed of two types of tetrahedral crystallographic sites (denoted 

T1 and T2) and two octahedral ones (denoted M1, M2). Two other octahedral sites (M3 and M4) 

are located in the brucite interlayer. AlVI or trivalent Fe3+ cations are preferentially located in the 

M4 site, while the divalent cations occupy the other sites (Bailey, 1988). There are three 

categories of chlorite in diagenetic and low to high-grade metamorphic rocks: tri-trioctahedral 

(sum of octahedral cations closed to 6 a.p.f.u), di-trioctahedral (5 a.p.f.u) and di-dioctahedral (4 

a.p.f.u). The main chemical substitutions occurring in chlorite are: Tschermak (TK) Si4+
(IV) + 

(Fe2+, Mg2+)(VI) = Al3+
(IV) + Al3+

(VI); ferromagnesian (FM) Mg2+
(VI) = Fe2+

(VI) and di-trioctahedral 

(DT) 2Al3+
(VI) + (VI) = 3(Mg2+,Fe2+)(VI). Two filling models are used in the literature for the 

distribution of cations on the crystallographic sites. The first model called "disorderly", considers 

that there is no preferred configuration (e.g., Inoue et al., 2009). The second model called 

"ordered" is constrained by specific rules for filling cations in the crystallographic sites such as 

preferred configuration and Fe - Mg equipartition (e.g., Vidal et al., 2001; 2005; 2006; Lanari et 

al., 2014a). These authors assume, following Holland et al., (1998), AlIV in T2, vacancies in M1, 

AlVI in M4 then M1 and then eventually in M2-M3, Fe and Mg in M2-M3 then in M1. Following 

the equipartition assumption, XMg (Mg2+/(Mg2++Fe2+)) is considered to be equal between M1 and 

M2-M3 sites. Several chlorite end-members are classically defined (Table 1): Al-free chlorite 

(Si4) [Mg6] O10(OH), amesite (Si2Al2) [(Fe2+,Mg)4 Al2] O10(OH)8, clinochlore (Si3Al) [Mg5 Al) 
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O10(OH)8, corundophilite (Si2Al2) [Mg4Al2] O10(OH)8, daphnite (Si3Al) [Fe2+
5 Al] O10(OH)8, 

pyrophyllite-gibbsite (Si4) [Al42] O10(OH)8 and sudoite (Si3Al) [(Fe2+,Mg)2  Al3] O10(OH)8. 

These end-members do not include any ferric iron component.  

 For fifteen years, several authors have emphasised the importance of Fe3+ in chlorite, 

particularly for their use as a geothermometer (Laird, 1988; Vidal et al., 2006; Inoue et al, 2009, 

Bourdelle et al., 2013, Lanari et al., 2014a). An additional substitution: Al-Fe3+ that is supposed 

to occur on the M4 site was defined but without defining a ferric chlorite end-member (Vidal et 

al., 2006). In this model, the incorporation of Fe3+ changes the chlorite composition and the 

activity of the other end-members. This choice of the M4 site is based on the results of Smyth et 

al. (1997) suggesting that Fe3+ in chlorite shows a strong preference for the M4 site where it 

substitutes for Al3+.  

 Several methods are available to measure Fe3+ in chlorite: chemical titration (Tchermak, 

1891; Orcel, 1927; Hallimond et al., 1939; Brindley, 1951), Mössbauer (Pal et al., 1993; Aja and 

Dyar, 2000; Inoue et al., 2009), XPS (Inoue et al., 2010) and µ-XANES spectroscopies (Wilke et 

al., 2001; Vidal et al., 2006; Rigault, 2010; Trincal et al., 2015).  

 

Chlorite data from literature 

A compilation of almost two hundred published data of chlorite structural formulae 

containing Fe3+ is reported in Table 2. These chlorites come from a wide range of rocks from 

various localities. Some are of detrital origin; other one experienced diagenetic to metamorphic 

conditions as oscillatory zoning chlorites from the Pic-de-Port-Vieux outcrop (Figure 1; Trincal 

et al., 2015). In addition, 202 data from three localities were incorporated in this review (Inoue et 

al., 2009). Most of the selected chlorite contain (in a.p.f.u, see Table 2): 2.5 to 3.5 Si4+, 2 to 4 
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Al3+ (Figure 2), 1.5 to 5.5 R2+ (Mg2+, Mn2+, Fe2+) (Figure 3) and less than 1 Fe3+ (Figure 4). 

These analyses are distributed between classical end-members and apparently follow the classical 

DT and TK substitutions (Figures 2, 3) or the Al-Fe3+ substitution (Figure 4). 

In diagenetic to metamorphic rocks, the XFe3+ content of chlorite depends on the 

temperature and the oxygen fugacity that is controlled by the buffering assemblage, i.e. the bulk 

rock composition (Lanari et al. 2014a). This control is supported by the data from Inoue et al. 

(2009), which show relationships between sampling localities and chlorite structural formulae 

and oxidation state (Figures 2, 3 and 4). It is therefore critical to look at the variability of XFe3+ 

recorded by chlorite in one rock sample, for a given bulk rock composition. In such cases the 

observed variability of XFe3+ is caused by temperature variations, rather than by changes in the 

buffering assemblage (Lanari et al. 2014a; Trincal et al. 2015). Most of the spot analyses reported 

in the literature correspond to different geological environments (Table 2); it is thus very difficult 

to use them to evaluate the link between the Fe3+ behaviour and the evolution of a parameter such 

as pressure, temperature, fO2, etc. 

The choice of the analytical method to estimate the XFe3+ in chlorite is essential. Chlorite 

Fe3+ measurements by Mössbauer spectroscopy or titration are relatively common but provide 

little constrains due to poor spatial resolution. Indeed, recent investigations using high-resolution 

mapping (e.g., deAndrade et al., 2006; Muñoz et al., 2006), demonstrated that chlorite is 

frequently zoned, recording strong compositional variability even at the crystal scale (e.g. Lanari 

et al., 2014b). Compositional zoning reflects time series of equilibrium conditions experienced by 

the rock. Thus in-situ micrometric analyses are required to ensure a precise determination of the 

Fe3+/FeTot of the successive growth zones, which is impossible using Mössbauer spectroscopy. µ-

XANES XFe3+ spot analyses or mapping allow highlighting iron chemistry heterogeneity of 
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chlorite, which is critical to see the relations between formation temperature and crystal geometry 

(Vidal et al., 2006; Trincal et al., 2015). 

 

µXANES data from zoned chlorites 

Accurate in-situ µXANES and electron microprobe analyses performed on zoned chlorite 

from the Sambagawa metamorphic belt in Japan (Vidal et al. 2006) and on oscillatory zoning 

chlorite from hydrothermal veins in the Pic-de-Port-Vieux, Pyrenees, Spain (Figure 1; Trincal et 

al., 2015) show variations in the composition of the Fe3+, Mg and Fe2+cation proportions, while 

that of Si and Al remain constant (Table 2, Figure 2). This trend is independently observed in 

both samples, which have different bulk rock compositions and experienced different 

metamorphic conditions. Indeed, chlorite from Japan comes from a blueschist facies metapelite 

made of K-white mica, garnet, albite, quartz and graphite (Vidal et al. 2006), while chlorite from 

Pyrenees crystallizes in a vein of a greenschist facies metapelite without garnet or graphite 

(Trincal et al., 2015). The absence of graphite is a good indicator of more oxidizing conditions. In 

both cases, XFe3+ increases as temperature decreases, as suggested by numerous authors (e.g. 

Lanari et al., 2014a; Vidal et al., 2016). Furthermore, from both cases, there is no significant 

change in the Al content of the zoned chlorite. This result excludes the hypothesis of DT, TK or 

Al-Fe3+ substitutions being at the origin of the XFe3+ variations.  

 

Al-free di-trioctahedral substitution 

Based on µXANES analyses performed on zoned chlorite by Vidal et al. (2006) and 

Trincal et al. (2015), and in agreement with the literature data (Table 2), we demonstrate that a 
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di/trioctahedral substitution implying Fe3+ can be used to explain the variations of XFe3+ in 

natural chlorite:  

2Fe3+ +  = 3(Mg2+,Fe2+)   (1) 

As this substitution does not explicitly involve any Al cations, it is named Al-free di-

trioctahedral substitution (AFDT); it must not be confused with Al-free chlorite end-member. 

This substitution is similar to another couple suggested by Billaut et al. (2002) and based 

on electron microprobe and Mössbauer spectroscopic analyses on sudoite:  

Fe3+ = Al(VI) and Fe2+ + Fe3+ +  = 3(Mg2+).   (2) 

However, chlorite analyses from their study display both Al and XMg variations, which is not our 

case. 

 

Chlorite compositions from Vidal et al. (2006) and Trincal et al. (2015) are plotted in a 

Fe3+ versus R2+ diagram (Figure 4). In this diagram, data from zoned chlorite are distributed 

along a line parallel to AFDT substitution vector. The AFDT substitution allows to define a 

theoretical Fe3+-bearing chlorite end-member; namely ferri-sudoite ((Si3Al) [(Fe2+, Mg)2 Fe3+
2  

Al) O10(OH)8) with two atoms of Fe3+ (Table 1). Ferri-sudoite can be separated into ferri-sudoite-

Fe ((Si3Al) [Fe2+
2 Fe3+

2  Al) O10(OH)8) and ferri-sudoite-Mg ((Si3Al) [Mg2 Fe3+
2  Al) 

O10(OH)8). As Fe3+ replaces Mg and Fe2+, it seems convenient to allocate up two atoms of Fe3+ to 

the M2-M3 sites (total multiplicity of 2) leaving Al in the M4 (Table 1).  

 According to several authors, Fe3+ cation seems limited to 1 a.p.f.u and is generally 

allocated to the M4 site following the Al-Fe3+ substitution. This last assertion is supported by Z-

contrast images of HAADF-STEM and others studies (e.g. Smyth et al., 1997; Inoue & Kogure, 

2016; Vidal et al., 2016). Among data collected in the literature, only 6 analyses show Fe3+ 

content higher to 1 a.p.f.u (Orcel, 1927; Brindley and Youell, 1953; Malysheva et al., 1977; 
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Goodman et Bain, 1979; Kodama et al., 1982; Singer et al., 2009 in Table 2). However, these 

analyses would actually match to other phyllosilicates, suggesting contamination issues. 

Although AFDT substitution suggests that it is possible, no sudoite with more than one Fe3+ atom 

has been yet discovered; it opens interesting research opportunities. 

 

Conclusion 

 The compilation of Fe3+-bearing chlorite analyses made in this study, especially those 

acquired by μXANES spectroscopy in zoned crystals, suggests the existence of a new chlorite 

substitution, the AFDT substitution that is characterized by 2Fe3+ +  = 3(Mg2+,Fe2+) and 

implies a new chlorite end-member: the ferri-sudoite (Si3Al) [(Fe2+, Mg)2 Fe3+
2  Al) O10(OH)8 

with two atoms of Fe3+. These results are not in agreement with previous studies that showed Al-

Fe3+ substitution implying only one Fe3+. The absence of constrains on the Fe3+ crystallographic 

position together with the Fe3+ ionic properties in chlorite, require further studies to confirm the 

existence of the AFDT substitution and of the ferri-sudoite end-member, for example with 

accurate in-situ Fe3+ measurements in synthetic or diagenetic chlorite formed in different 

oxidizing environments. This study opens the door to further research developments that would 

have strong implications, for example in chlorite geothermometry. 
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Figures and Tables 

 

Figure 1 : Backscattered-electron image of an oscillatory zoning chlorite showing Al-Free 

Di-Trioctahedral substitution, from the Pic-de-Port-Vieux, Pyrenees, Spain. Numbers refer 

to structural formula reported in Table 2. 

 

This is a 'pre-published' version of a paper accepted for publication in Clay Minerals. 
This version may be changed during the production process. 
The DOI, which may be used for citation purposes, but which will not be active until the version of record is published, is  10.1180/claymin.2016.051.4.09



Figure 2

highligh

structur

 

2: Compila

ht the di-tri

ral formula

ation of the 

ioctahedral

as are repor

Fe3+-bearin

l (DT) and 

rted in tabl

ng chlorite 

Tschermak

les 1 and 2.

compositio

k (TK) subs

  

ons. The Si 

stitutions. E

- Al plot is 

End-memb

 

used to 

ers and 

This is a 'pre-published' version of a paper accepted for publication in Clay Minerals. 
This version may be changed during the production process. 
The DOI, which may be used for citation purposes, but which will not be active until the version of record is published, is  10.1180/claymin.2016.051.4.09



Figure 3

Wiewio

AFDT s

3: Compila

ra and Wei

substitution

ation of Fe3+

iss (1990) is

ns.  

+-bearing c

s used to hi

chlorite com

ighlight the

mpositions. 

e di-trioctah

The Si4+ - R

hedral (DT

R2+ plot by 

T), Al-Fe3+ a

 

and new 

This is a 'pre-published' version of a paper accepted for publication in Clay Minerals. 
This version may be changed during the production process. 
The DOI, which may be used for citation purposes, but which will not be active until the version of record is published, is  10.1180/claymin.2016.051.4.09



 

Figure 4

highligh

 

 

 

 

 

 

 

4: Compila

hts the di-tr

ation of the 

rioctahedra

Fe3+-bearin

al (DT), Al-

ng chlorite 

-Fe3+ and n

compositio

ew AFDT s

ons. The Fe

substitution

e3+ - R2+ plo

ns.  

 

t 

This is a 'pre-published' version of a paper accepted for publication in Clay Minerals. 
This version may be changed during the production process. 
The DOI, which may be used for citation purposes, but which will not be active until the version of record is published, is  10.1180/claymin.2016.051.4.09



Table 1 : Classical chlorite end-members and new ferri-sudoite end-member structural formula. 
The numbers in brackets refer to the quantity of atoms by structural formula distributed in 
tetrahedral (T) or octahedral (M) sites. 

  

 

Table 2: Fe3+-bearing chlorites structural formula compilation, calculated on the basis of O = 14. 
Speciation of iron was obtained using chemical titration (CHE) or, since twenty years, using 
XANES (XAN), Mössbauer (MÖS) or XPS spectroscopies. 

 

  
 
  

Cf. attached xls file 

T1 (2) T2 ( 2)  M1 (1) M2‐M3 (4) M4 (1)

Amesite‐Mg / Corundophilite Si,Si Al,Al  Al Mg,Mg,Mg,Mg Al

Amesite‐Fe Si,Si Al,Al  Al Fe,Fe,Fe,Fe Al

Clinochlore Si,Si Si,Al  Mg Mg,Mg,Mg,Mg Al

Chamosite/Daphnite Si,Si Si,Al  Fe Fe,Fe,Fe,Fe Al

Sudoite‐Mg Si,Si Si,Al  Mg,Mg,Al,Al Al

Sudoite‐Fe Si,Si Si,Al  Fe,Fe,Al,Al Al

Al‐Free Chlorite Si,Si Si,Si  Mg Mg,Mg,Mg,Mg Mg

Pyrophyllite‐Gibbsite Si,Si Si,Si  Al,Al,Al, Al

Ferri‐Sudoite Si,Si Si,Al  (Fe,Mg)2,Fe
3+
,Fe

3+
Al
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